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Abstract A partially defined cooperative game PDCG consists of a set of
players N = {1, 2, , n} and a worth function w on a collection C of non-
empty subsets of N , where w(S) is the value that can be obtained from the
cooperation of the coalition S. The Shapley value and the nucleolus are well-
established fair allocation methods for when C equals all the non-empty sub-
sets of N . There are fairness properties associated with each method. The
nucleolus is rational, efficient, unbiased, subsidy-free, and consistent. Mean-
while, the Shapley value is marginal-monotone, subsidy-free, unbiased, addi-
tive, and efficient. The goal of this research was to find fair allocation methods
for partially defined cooperative games when C consists only of coalitions of
size n, n − 1, and 1. The group rationality, efficiency, and consistency of the
obtained solution methods are studied.

Keywords allocation method · value · cooperative game · axioms · incomplete
information

1 Introduction

2 Partially Defined Cooperative Games

Throughout this paper, we let N = {1, 2, ..., n} be the fixed set of players.
A nonempty subset S of N is called a coalition, and we write |S| or s for
the number of players in the coalition S. A cooperative game is a real-valued
function ŵ defined on the coalitions. By convention, we define ŵ(∅) = 0. The
real number ŵ(S) is called the worth of coalition S and is interpreted as the
total benefit available to the members of the coalition S if they cooperate with
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each other in the most efficient possible manner. In the context of a joint cost
allocation problem, ŵ(S) is the cost savings obtained through cooperation as
opposed to each member working alone.

We often restrict the class of cooperative games under consideration. Col-
lections of games often cited in the literature include zero-monotonic, super-
additive, and convex. The cooperative game ŵ is zero-monotonic if ŵ(S) +
ŵ({i}) ≤ ŵ(S∪{i}) for all coalitions S and players i ∈ N−S. The cooperative
game ŵ is superadditive if ŵ(S)+ ŵ(T ) ≤ ŵ(S∪T ) for all disjoint coalitions S
and T . The cooperative game ŵ is convex if ŵ(S)+ŵ(T ) ≤ ŵ(S∪T )+ŵ(S∩T )
for all coalitions S and T . Note that convex games are superadditive, and
superadditive games are zero-monotonic. The cooperative game ŵ is zero-
normalized if ŵ({i}) = 0 for all players i ∈ N .

Let Ω̂ be a collection of cooperative games. An allocation method on Ω̂ is
a function ϕ : Ω̂ → Rn. We interpret ϕi(ŵ) as the fair share to player i in the
game ŵ. A well-known allocation method is the Shapley (1953) value defined
by

ϕi (ŵ) =
∑
S⊆N

(s− 1)!(n− s)!
n!

[ŵ(S)− ŵ(S − {i})] (1)

In words, the Shapley value allocates to a player his average marginal contri-
bution over all possible orderings of the players.

A partially defined cooperative game is a cooperative game in which only
some of the coalition worths are known. In this paper, we will restrict our
attention to games for which the worths of coalitions of sizes 1, n − 1, and n
are known, and the worths of singleton coalitions are always zero. Formally,
a partially defined cooperative game (pdcg) is a vector of worths w ∈ R{0}∪N .
The real number w0 is the worth of the grand coalition N , and wi is the worth
of the coalition N − {i} for each player i ∈ N .

Since our viewpoint is that partially defined cooperative games arise when
we have insufficient resources to determine the worth of each coalition, it is
important to know what “fully defined” games could underlie a given partially
defined game. Let Ω̂ be a collection of cooperative games. An Ω̂-extension of
the pdcg w is a cooperative game ŵ ∈ Ω̂ satisfying ŵ({N}) = w0, ŵ(N−{i}) =
wi, and ŵ({i}) = 0 for all i ∈ N . Define Ω to be the set of pdcg w that have an
Ω̂-extension ŵ, and whatever word is used to describe a game in Ω̂ (e.g.,zero-
monotonic) will also be used to describe a pdcg in Ω.

Example 1 Consider the four-player pdcg w = (w0, w1, w2, w3, w4). If ŵ is
an extension of w, then ŵ(N) = w0, ŵ({2, 3, 4}) = w1, ŵ({1, 3, 4}) = w2,
ŵ({1, 2, 4}) = w3, ŵ({1, 2, 3}) = w4, and ŵ({1}) = ŵ({2}) = ŵ({3}) =
ŵ({4}) = 0. Furthermore, ŵ is monotonic if and only if 0 ≤ ŵ({i, j}) ≤
min{k, l} for each of the three essentially different ways of assigning i, j, k, l
to 1, 2, 3, 4 (e.g., i = 1 and j ∈ {2, 3, 4}). Similarly, ŵ is superadditive if and
only if ŵ is monotonic and ŵ({i, j}) + ŵ({k, l}) ≤ w0 for each of the three
essentially different ways of assigning i, j, k, l to 1, 2, 3, 4. Finally, ŵ is convex
if and only if ŵ is superadditive and wk + wl − w0 ≤ ŵ({i, j}) for each of the
six essentially different ways of assigning i, j, k, l to 1, 2, 3, 4.
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More specifically, suppose w = (9, 7, 6, 5, 4). An example of a convex (and
so also monotonic and superadditive) extension has ŵ(S) = 4 for |S| = 2.
An example of a monotonic and superadditive, but not convex, extension has
ŵ(S) = 0 for |S| = 2. An example of a monotonic, but not superadditive or con-
vex, extension has ŵ({3, 4}) = 6, ŵ({1, 2}) = 4, and ŵ({2, 4}) = ŵ({1, 4}) =
ŵ({2, 3}) = ŵ({1, 3}) = 0.

Theorem 1 The pdcg w is monotonic if and only if 0 ≤ wi ≤ w0 for all
i ∈ N .

Proof If the pdcg w is monotonic, then there is a monotonic extension ŵ of
w, and so for any i, j ∈ N with i 6= j, 0 = ŵ({j}) ≤ ŵ(N − {i}) = wi, and
wi = ŵ(N − {i}) ≤ ŵ(N) ≤ w0. Conversely, suppose 0 ≤ wi ≤ wn+1 for
all i ∈ N . Define the extension ŵ by ŵ(S) = 0 if |S| < n − 1. Clearly, ŵ is
monotonic.

Theorem 2 The pdcg w is superadditive if and only if 0 ≤ wi ≤ w0 for all
i ∈ N .

Proof The proof is essentially identical to the proof of the previous theorem.

Theorem 3 The pdcg w is convex if and only if 0 ≤ wi ≤ w0 and
∑

j∈N−{i} wj ≤
(n− 2)w0 for all i ∈ N .

The following theorem was conjectured by Ramer. Unfortunately, her proof
in the converse direction was flawed: the extension she defined is not always
convex.

Proof If the pdcg w is convex, then there is a convex extension ŵ of w.
Then ŵ(N − {1}) + ŵ(N − {2}) ≤ ŵ(N) + ŵ(N − {1, 2}), ŵ(N − {1, 2}) +
ŵ(N − {3}) ≤ ŵ(N) + ŵ(N − {1, 2, 3}), ŵ(N − {1, 2, 3}) + ŵ(N − {4}) ≤
ŵ(N) + ŵ(N − {1, 2, 3, 4}), ..., ŵ(N − {1, 2, . . . , n− 2}) + ŵ(N − {n− 1}) ≤
ŵ(N) + ŵ(N − {1, 2, . . . , n − 1}) = ŵ(N). Summing these n − 2 inequalities
and simplifying, we obtain

∑
j∈N−{n} ŵ(N − {j}) ≤ (n − 2)ŵ(N), which is

equivalent to
∑

j∈N−{n} wj ≤ (n− 2)w0. Reordering the players so that some
i ∈ N , instead of n, appears last, we obtain the condition in the theorem.

Conversely, suppose 0 ≤ wi ≤ w0 and
∑

j∈N−{i} wj ≤ (n− 2)w0 for all i ∈
N ; these will be referred to as the converse suppositions. Define the extension
ŵ by ŵ(S) = max{0,

∑
i∈N−S wi − (n − s − 1)w0 if 1 < s < n − 1. By this

definition and the first converse supposition, 0 ≤ ŵ(S) for all coalitions S; this
result will be referred to as non-negativity.

We claim that ŵ(S) ≤ ŵ(T ) for all coalitions S ⊆ T ; this result will be
referred to as monotonicity. Indeed, suppose S ⊆ T , and consider the following
cases.

Case 1. Suppose ŵ(S) = 0. Then ŵ(S) = 0 ≤ ŵ(T ) follows by non-
negativity.

Case 2. Suppose ŵ(S) > 0 and |T | ≤ n − 1. Then ŵ(S) =
∑

i∈N−S wi −
(n−s−1)w0. By the first converse supposition, 0 ≤ −wj +w0 for all j ∈ T−S.
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Summing together the equality and inequalities from the last two sentences,
we obtain ŵ(S) ≤

∑
i∈N−T wi − (n − t − 1)w0. The right hand side of this

inequality equals ŵ(T ): directly if |T | = n − 1 and because it is positive if
|T | < n− 1. Thus, ŵ(S) ≤ ŵ(T ).

Case 3. Suppose ŵ(S) > 0 and T = N . If |S| = n−1, then S = N −{i} for
some i ∈ N , and so ŵ(S) = wi ≤ w0 = ŵ(T ) by the first converse supposition.
If |S| < n−1, then S ⊆ N−{i} for some i ∈ N . By Case 2, ŵ(S) ≤ ŵ(N−{i}),
and by the earlier result in this case, ŵ(N−{i}) ≤ ŵ(N). Thus, ŵ(S) ≤ ŵ(T ).

We now claim the convexity condition: ŵ(S)+ŵ(T ) ≤ ŵ(S∪T )+ŵ(S∩T )
for all coalitions S and T . Indeed, suppose S and T are coalitions, and consider
the following cases.

Case 1. Suppose S ⊆ T (or T ⊆ S). Then S ∪ T = T and S ∩ T = S (or
S ∪ T = S and S ∩ T = T ). Thus, ŵ(S) + ŵ(T ) = ŵ(S ∪ T ) + ŵ(S ∩ T ).

In the remaining cases, we will assume that neither coalition S or T is a
subset of the other.

Case 2. Suppose |S| = |T | = n − 1. Then S = N − {i} and T = N − {j}
for some distinct i, j ∈ N . By its definition, ŵ(N − {i, j}) ≥ wi + wj − w0.
Rearranging this inequality and using some definitions, we obtain ŵ(S) +
ŵ(T ) = wi + wj ≤ w0 + ŵ(N − {i, j}) = ŵ(S ∪ T ) + ŵ(S ∩ T ).

Case 3. Suppose |S| = n− 1 and |T | < n− 1. Then S = N − {k} for some
k ∈ N , and since T is not a subset of S, it follows that k ∈ T . If ŵ(T ) = 0, then
ŵ(S)+ŵ(T ) = wk+0 ≤ w0+0 = ŵ(N)+0 ≤ ŵ(S∪T )+ŵ(S∩T ). If ŵ(T ) > 0,
then ŵ(S)+ŵ(T ) = wk+

∑
i∈N−T wi−(n−t−1)w0 = w0+

∑
i∈(N−T )∪{k} wi−

(n−t)w0 = ŵ(N)+
∑

i∈N−(S∩T ) wi−(n−|S ∩ T |−1)w0 ≤ ŵ(S∪T )+ŵ(S∩T ).

Case 4. Suppose |T | = n − 1 and |S| < n − 1. Follows immediately from
Case 3 after interchanging S and T .

Case 5. Suppose |S| < n−1 and |T | < n−1. If ŵ(S) = 0, then ŵ(S∩T ) = 0
by non-negativity and monotonicity, and ŵ(T ) ≤ ŵ(S ∪ T ) by monotonicity;
hence, ŵ(S) + ŵ(T ) = 0 + ŵ(T ) ≤ ŵ(S ∩ T ) + ŵ(S ∪ T ). Similarly, the con-
vexity inequality holds if ŵ(T ) = 0. Now suppose ŵ(S) > 0 and ŵ(T ) > 0.
Then ŵ(S)+ŵ(T ) =

∑
i∈N−S wi−(n−s−1)w0+

∑
i∈N−T wi−(n−t−1)w0 =(∑

i∈N−(S∪T ) wi − (n− |S ∪ T | − 1)w0

)
+
(∑

i∈N−(S∩T ) wi − (n− |S ∩ T | − 1)w0

)
.

In this last expression, the definition of ŵ implies that the first term equals
ŵ(S ∪T ) if |S ∪ T | ≥ n− 1 and is no greater than ŵ(S ∪T ) if |S ∪ T | < n− 1,
and the second term is no greater than ŵ(S ∩ T ) if |S ∩ T | ≥ 2, equals∑

i∈N−{k} wi − (n − 2)w0 ≤ 0 = ŵ(S ∩ T ) for some k ∈ N if |S ∩ T | = 1
where the inequality follows from the second converse supposition, and equals∑

i∈N wi − (n − 1)w0 ≤ 0 = ŵ(S ∩ T ) if |S ∩ T | = 0 where the inequality
follows from both converse suppositions.

3 The Nucleolus for partially defined coalition games

For every allocation vector x ∈ <N , and every coalition S ⊆ N , e(x, S) =
x(S)− v(S) is called the excess of coalition S at x.
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Let (N,C,w) be a pdcg and let K ⊆ <N The nucleolus of the PDG (N,w)
relative to K is the set ℵ(N,w,K) = {x ∈ K : θ(x) -L θ(y),∀y ∈ K} where
θ(x) is the list of excesses e(x, S) =

∑
j∈S xj − w(S) for all S ∈ C sorted in

ascending order and -L is lexicographic order. And, θ(x) is the excess vector.

Theorem 4 Suppose N = 1, 2, ..., n is a set of players, C contains the coali-
tions of size n, n − 1, and 1, and (w(N) ≥ w(N − {n}) ≥ w(N − {n − 1}) ≥
≥ w(N − {1}) ≥ w({n}) = w({n − 1}) = ... = w({1}) = 0 are the known
coalition worths. Then the nucleolus, x, for the partially defined cooperative
game (N,C,w) can be computed in the following recursive manner.

Case 1 If the game worths satisfy w(N−{i}) ≤
(
n− 2

2

)
w(N) then nucleolus

is equal split i.e., xi =
w(N)

k
, ∀i ∈ N and k = |N |.

Case 2 If case 1 does not hold and if w(N) ≤
2
∑

j∈Nw(N−{j})−nw(N−{i})

n− 2
, ∀i ∈

N , the nucleolus is xi = w(N)−w(N−{i})+λ where λ =

∑
i∈N w(n− {i})− (n− 1)w(N)

n

Case 3 If case 2 does not hold, the last player gets xn =
w(N)− w(N − n)

2
.

The payoff for the remaining players is the nucleolus for the Davis-Maschler
reduced game of coalition {1, 2, ..., n− 1}.

Proof Suppose (N,C,w) is a zero-monotonic, partially defined cooperative
game where N = 1, 2, 3, .., n. Let n be the weaker player. If the game satisfies

the inequality in the first case, the allocation for player i is xi =
w(N)

k
.

e(x,w(i)) =
w(N)

k
− 0 =

w(N)

k

e(x,w(S)) = (n− 1)
w(N)

k
− w(N − {i}) ≤

(
n− 2

2

)
w(N)

Therefore, e(x,w(i)) ≤ e(x,w(S)) where S = N − {i}, i ∈ N

So, if the game satisfies the first case, the allocation is the nucleolus.

If the game satisfy the inequality of the second case, the allocation method

is xi = w(N)− w(N − {i}) + λ where λ =

∑
i∈N w(n− {i})− (n− 1)w(N)

n
.

Since n is the weaker player, and
n− 2

n
w(N) < w(N−{i}) ≤

2
∑

j∈Nw(N−{j})−nw(n−{i})

n− 2
Then, e(x,w(S)) ≤ e(x,w(i)), S ⊂ N
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If the game satisfy the third case, then the nth player will get half of their
marginal, and since we assumed that the nth player is the weakest player, then
their excess will be the least among other players.

Then we will redefine the nucleolus using the Davis- Maschler reduced game
property.

When we reapply the theorem to the new game, there are five possible cases.

Case 4 The remaining player will each get xi =
w(N)− xn
k − 1

. Since n is the

weakest player and all the remaining players get the same amount because the

reduced game satisfy w(N − {i}) ≤
(
n− 2

2

)
w(N), the following inequality

holds.

e(xn, w(n)) ≤ e(xi, w(i)) ≤ e(xN−{i}, w(N−{i})) ≤ e(xN−{n}, w(N−{n})), i 6= n

Therefore, it is the nucleolus.

Additionally, the excesses of the reduced game will be the same as the ex-
cess of the original game since we subtract the payoff of player n from the
grand coalition and the coalitions that includes the player.

The excess inequality will also hold if more than one player get half of their
marginal.

Case 5 The remaining player will each get xi = w(N)−w(N−i)+λ where λ =∑
i∈N w(n− i)− (n− 1)w(N)

n
n is the weaker player and every N−{i}−{n}

coalition satisfy the following inequality.

n− 2

n
w(N) < w(N − {i}) ≤

2
∑

j∈Nw(N−{j})−nw(n−{i})

n− 2

Therefore, the following excesses inequality holds.

e(x,w(S)) ≤ e(x,w(i)), S ⊂ N

The previous inequality will also hold for the case where more than one player
gets half of their marginal.

Example 2 Let (N,C,w) be a partially defined cooperative game where N =
1, 2, 3, 4.

w(1) = w(2) = w(3) = w(4) = 0

w(N) = 100, w(123) = 50, w(134) = 40, w(124) = 30, w(234) = 20



The Nucleolus for Partially Defined Cooperative Games 7

w(N − i) ≤ w(N)

2
,∀i ∈ N

The game satisfies the inequality of the first case. Therefore, the nucleolus can
be computed in the following way.

xi =
w(N)

4
=

100

4
= 25

e(x123, w(123)) = 25, e(x124, w(124)) = 45, e(x134, w(134)) = 35, e(x234, w(234)) =
55, e(x1, w(1)) = 25, e(x2, w(2)) = 25, e(x3, w(3)) = 25, e(x4, w(4)) = 25

Example 3 Let (N,C,w) be a partially defined cooperative game where N =
1, 2, 3, 4.

w(1) = w(2) = w(3) = w(4) = 0

w(N) = 100, w(123) = 75, w(134) = 70, w(124) = 60, w(234) = 55

w(N − i) ≤
∑
j∈N

w(N − j)− 2w(N − i),∀i ∈ N

The game satisfies the inequality of the second case. Therefore, the nucleolus
can be computed in the following way.

x1 = 35, x2 = 30, x3,= 20, x4 = 15

e(x123, w(123)) = 10, e(x124, w(124)) = 10, e(x134, w(134)) = 10, e(x234, w(234)) =
10, e(x1, w(1)) = 35, e(x2, w(2)) = 30, e(x3, w(3)) = 20, e(x4, w(4)) = 15

Example 4 Let (N,C,w) be a partially defined cooperative game where N =
1, 2, 3, 4.

w(1) = w(2) = w(3) = w(4) = 0

w(N) = 1000, w(123) = 800, w(134) = 160, w(124) = 540, w(234) = 100

The game doe not satisfy the inequalities of any of the two games, so player 4

gets x4 =
1000− 800

2
= 100.

The reduced game can be defined in the following way.

w(1) = w(2) = w(3) = w(4) = 0

w′(123) = 900, w′(12) = 440, w′(13) = 60, w′(23) = w′(1) = w′(2) = w′(3) = 0

The reduced game does not satisfy the first two cases as well, so the last player

gets x3 =
900− 440

2
= 230 And, the new reduced game can be defined in the

following mannar.

w”(12) = 670, w”(1) = 0, w”(2) = 0

The definition of the nucleolus on a fully-defined, two-player games yields the
payoff for the remaining two players.

x1 = x2 =
w”(12) + w”(1)− w”(2)

2
=
w”(12)− w”(1) + w”(2)

2
= 335
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