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1 Introduction
Group theory is a powerful tool for understanding and characterizing symme-
tries. Coalition games are useful to model real-life situations where a fair allo-
cation of resources or savings is needed. It is not immediately clear that there
should be a direct relation between groups and coalition games. However, when
a coalition game is defined on a group, certain patterns are revealed in relation
to the group. Previous research on the subject was not found.

In this paper we examine a conjecture about the prenucleolus of coalition games
defined on the finite group Zn (integers mod n with addition) through certain
examples.

In section 2, we define a group. We define coalition games in section 3. Lastely,
section 4 has the conjecture and the examples.

2 Introduction to Groups
The following are important definitions and theorems that are utilized through
the examples presented.

We start by defining a group and a group generator.

Definition 1. A group is a set G together with a binary operation (·) such
that the following four properties hold:
1. (closure) For any x and y in G, x · y is in G.
2. (identity) There exists a member e in G which has the property that, for all
x in G, e · x = x · e = x.
3. (inverse) For every x in G, there exists a y in G, called the inverse of x, such
that x · y = e.
4. (associative law) For any x, y, and z in G, then (x · y) · z = x · (y · z).

Definition 2. An element g of the group G is said to be a generator if every
element of G can be expressed as a power of g.
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The following definitions provide a way we can find the generators of any Zn

groups. They also provide a method of obtaining the size of the set of generators
any Zn groups.

Theorem 3. For the group of integers mod n with addition as the binary
operation Zn, the generators of Zn are precisely the integers between 0 and n
that are co-prime to n.

The following theorem gives us a way to find the size of a set of generators
of any Zn group.

Theorem 4. If the prime factorization of n is given by

n = pr1
1 . p

r2
2 . . . prk

k ,

where p1, p2, . . . , pk are distinct primes, and r1, r2, . . . , rk are positive inte-
gers, then the count of numbers less than n that are coprime to n is

φ(n) = (p1 − 1) · p(r1−1)
1 · (p2 − 1) · p(r2−1)

2 . . . (pk − 1) · p(rk−1)
k .

The following are some important theorems that will be utilized in the ex-
amples provided.

Theorem 5. Let G be a finite group, and H a subgroup of G. Then the order
of H divides the order of G. That is, |G| = k · |H| for some positive integer k.

Theorem 6. Given two non-zero integers x and y, the greatest common divisor
of x and y is the smallest positive integer that can be expressed in the form
ux+ vy with u and v being integers.

Since we covered the needed definitions and theorems from group theory, we
will define what are coalition games and how we solve them in the following
section.

3 Coalition Games
Definition 7. A coalition game consists of a finite set N of n players (where
n = |N |) and a real-value function w on the non-empty subsets of N . A non-
empty subset of N is called a coalition, and w(S) is the worth of coalition S.

You can think of the players of a coalition game as companies, cities, or
individuals who have to accomplish a certain task. We can think about the
savings each subset of our players (or coalitions of players) can have by working
together. The amount of savings is represented by the worth of each coalition.
Solving a coalition game means finding an allocation. An allocation can be
defined in the following way.

Definition 8. An allocation for the coalition game N with a worth function w
is a payoff vector x = (x1, x2, . . . , xn) satisfying

∑
i∈N

xi = w(N).
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Allocations can be thought of as a fair way to divide the savings players
make when they all work together. It can be seen as a way to encourage players
to join the Grand Coalition. One way we judge an allocation is through the
excess each player has. Excess can be defined in the following way.
Definition 9. For every allocation x, and every coalition S ⊆ N ,

e(S, x) = x(S)− w(S)

is called the excess of coalition S at x.
An excess can be thought of as a measure of a coalition happiness. The bigger

the coalition excess is, the more the coalition is getting above their worth, so the
happier the coalition must be. One of the allocations that try to make sure tht
the coalitional excess is as big as possible for all coalitions is the prenucleolus.
It is defined below.
Definition 10. The prenucleolus ν is the allocation that successively maximizes
the smallest excesses. More formally, for a given coalition game (N,w) and
payoff x = {x1, . . . , xn}, we define the 2n−vector θ(x) as the vector whose
components are the excesses of the coalitions S ⊂ N sorted in a non decreasing
order. The nucleolus ν lexicographically maximizes θ(x) for all x.

Now that we covered some important definitions about games, we can move
on to defining a coalition game on finite groups.

4 Group Coalition Games
Definition 11. A coalition game on the finite group (G,w) consists of players
which are represented by the elements of the group G and a worth function w
defined on the nonempty subsets S of G.
Theorem 12. The prenucleolus payoff ν to every element i of the group G is
νi ≥ 0
Proof. Let i ∈ G where G is a group of order n. Consider the coalition S ⊂ G.
It follows that w(S) ≥ w(S − {i}).

Suppose νi < 0, the excess

e(ν, S) =
∑
i∈S

νi − w(S) ≤
∑

j∈S−{i}

νi + νj − w(S − {i})

= e(ν, S − {i}) + νi < e(ν, S − {i})
.

Hence, the minimum excess is for one or more coalitions containing i, and
the excesses for coalitions that do not contain i are strictly larger than the
minimum excess. Hence, taking away a very small amount from each player
j 6= i and giving it all to player i will raise the minimum excess. So, x could
not have been the prenucleolus. Since the only extra assumption we made for
the allocation ν was νi < 0, it follows that νi(w) ≥ 0.
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The following is a conjecture defining the prenucleolus for Zn groups.

Conjecture 1. For a group G, the set A is the set of generators, set C is the
largest proper subgroup of G generated by the smallest prime factor p1 of G,
and set B has all the elements not in A or C.

The prenucleolus ν for i ∈ A, j ∈ B and k ∈ C, is
νi = νj = p1

p1 − 1 , νk = 0 if |B| < |C|

νi = λ, νj = νk = λ

2 ∀k 6= {e}. if |B| > |C|

And, |B| cannot equal |C|.

Now that we reviewed the conjecture, we can look at some examples and see
if the conjectured prenucleolus is the prenucleolus for these examples.

Example 1. Consider the group Z105, the coalition
game is defined in the following way.

w(S) =



105 if (S ∩A 6= ∅) or two elements are coprime
35 if S ⊂ {3, 6, 9, 12, 18, 24, 27, 33, 36, 39, 48, 51, 54, 57, 66, 69, 72, 78, 81, 87, 93, 96, 99, 102}
21 if S ⊂ {5, 10, 20, 25, 40, 50, 55, 65, 80, 85, 95, 100}
15 if S ⊂ {7, 14, 28, 49, 56, 77, 91, 98}
7 if S ⊂ {15, 30, 45, 60, 75, 90}
5 if S ⊂ {21, 42, 63, 84}
3 if S ⊂ {35, 70}
1 if S = {0}

Observe that |A| = φ(105) = 48, |C| = [3] = 35, so |B| = 22. According to the
conjectured prenucleolus, νi = νj = 3/2 and νk = 0.

By the definition of the coalition game and Theorem 6, the worth function
w satisfies w(S) = 105 if S generates Z105 and 1 ≤ w(S) ≤ 35 otherwise.

Notice
104∑
i=0

νi = 48(3/2) + 22(3/2) + 35(0) = 105. Hence, ν is an allocation.

Let C0 be the elements of C divisible by neither 7 nor 5, |C0| = 24 which is
larger than |B|.

Observe that the minimal generating sets include
- the singletons from A, and
- pairs consisting of one element from B and one element from C0.

Indeed, it is well known that the an element i of Zn is a generator if and
only if i is coprime to n (Theorem 3). This verifies the first collection. It is also
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well known that if a and b are non-zero integers, there exist integers u and v
satisfying ua+vb = gcd(a, b), the greatest common divisor of a and b (Theorem
6). Since i and j are coprime in the second collection, i and j generate 1 which
then generates the entire group. This verifies the second collection.

Denote the union of the two described collections byM.

Furthermore, observe that any subset of C does not generate the group (e.g.,
1 is not a multiple of 3 and so cannot be generated by C). Thus, any coalition
S /∈M must either not generate the group or must contain at least one element
of A ∪B.

Now observe that the excess of the conjectured prenucleolus for each coalition
S ∈ M is χ(ν, S) = 1.5 − 105 = −103.5. If S ⊂ C, then χ(ν, S) = 0 − w(S) ≥
−35. Finally, if S /∈M is not a subset of C, then χ(ν, S) ≥ 1.5− 105 = −103.5.
Thus, the minimum excess for the allocation ν is −103.5.

Now suppose that x is the prenucleolus. By the previous paragraph, the
minimum excess of x must be at least −103.5. Specifically,
- χ(x, {i}) ≥ −103.5 if i ∈ A; and
- χ(x, {i, j}) ≥ −103.5 if i ∈ B and j ∈ C0;.

By plugging in the definition of excess and the worth function and simplify-
ing, we obtain
- xi ≥ 1.5 if i ∈ A;
- xi + xj ≥ 1.5 if i ∈ B and j ∈ C0.

By a Theorem 14, the elements of x must be nonnegative. Specifically, -
xi ≥ 0 if i ∈ C.

Finally, since x is an allocation, we have -
104∑
i=1

xi = 105.

We organize the inequalities in the first column of the following table. The
next eight columns give the number of inequalities that contain xi for each i in
the set specified in the header row. The ’number’ column gives the number of
inequalities of each type.

Inequalities A B C0 C − C0 number weight
xi ≥ 1.5, i ∈ A 1 0 0 0 48 1
xi + xj ≥ 1.5, i ∈ B, j ∈ C0 0 24 22 0 22 · 24 = 528 1/24
xi ≥ 0, i ∈ C0 0 0 1 0 24 1/12
xi ≥ 0, i ∈ C − C5 0 0 0 1 11 1

Multipling each inequality of each type by the corresponding weight and sum-

ming, we obtain
104∑
i=1

xi ≥ 105. Now the left hand side equals 105, and so all of
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the inequalities must hold with equality. This implies first that xi = 0 for all
i ∈ C, and then this implies that xi = 1.5 for all i ∈ A ∪B. Thus, x = ν.

The case in this example had a stronger condition than the conjecture: that
is |B| < |C0|. Later, the result in this example will be generalized to all group
coalition games where |B| < |C0|.

Example 2. Consider the group Z2431, the coalition
game is defined in the following way.

w(S) =



2431 if (S ∩A 6= ∅) or two elements are coprime
221 if S ⊂ {11, 22, 33, 44, . . . , 2420}
187 if S ⊂ {13, 26, 39, 52, . . . , 2418}
143 if S ⊂ {17, 34, 51, 68, 85, . . . , 2414}
17 if S ⊂ {143, 286, 429, 572, 715, . . . , 2288}
13 if S ⊂ {187, 374, 561, 748, . . . , 2244}
11 if S ⊂ {221, 442, 663, . . . , 2210}
1 if S = {0}

Observe that |A| = φ(2431) = 1920, |C| = [11] = 221, so |B| = 290. Accord-
ing to the conjectured prenucleolus, νi = λ = 4862

4351 and νj = νk = λ

2 = 4862
8702 .

By the definition of the coalition game and Theorem 4, the worth function
w satisfies w(S) = 2431 if S generates Z105 and 1 ≤ w(S) ≤ 221 otherwise.

Notice
2430∑
i=0

νi = 1920
(

4862
4351

)
+ 290

(
4862
8702

)
+ 221

(
4862
8702

)
= 2431. Hence,

ν is an allocation.

Let us consider subsets of B and C to identify the minimal generating sets
of G.
Set B can be divided in
- Set nny
where the elements of the set are only divisible by the third prime factor of |G|:
17 (observe the y in the third place).

|nny| = (p1 − 1) · p(r1−1)
1 · (p2 − 1) · p(r2−1)

2 = 10 ∗ 12 = 120

- Set nyn
where the elements of the set are only divisible by the second prime factor of
|G|: 13 (observe the y in the second place).
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|nyn| = (p1 − 1) · p(r1−1)
1 · (p3 − 1) · p(r3−1)

3 = 10 ∗ 16 = 160

- Set nyy
where the elements of the set are only divisible by the product of the second
and the third prime factor of |G|: 221 (observe the y in the second and third
place).

|nyy| = (p1 − 1) · p(r1−1)
1 = 10

The orders of these subsets add up to the order of |B| and each is divisable
by a distinct number, then the three subsets partition B.

Set C − {e} can be divided in
- Set ynn
where the elements of the set are only divisible by the first prime factor of |G|:
1 (observe the y in the first place).

|ynn| = (p2 − 1) · p(r2−1)
2 · (p3 − 1) · p(r3−1)

3 = 12 ∗ 16 = 192

- Set yyn
where the elements of the set are only divisible by the product of the first and
the second prime factor of |G|: 143 (observe the y in the first and second place).

|yyn| = (p3 − 1) · p(r3−1)
3 = 16

- Set yny
where the elements of the set are only divisible by the product of the first and
the third prime factor of |G|: 170 (observe the y in the first and third place).

|yny| = (p2 − 1) · p(r2−1)
2 = 12

The orders of these subsets add up to the order of |C| − 1 and each is divis-
able by a distinct number, then the three subsets partition C − {e}.

Observe that the minimal generating sets include
- the singletons from set A,
- pairs consisting of one element from set nny and one element from set ynn,
-pairs consisting of one element from set nny and one element from set yyn,
- pairs consisting of one element from set nyn and one element from set ynn,
- pairs consisting of one element from set nyn and one element from set yny,
-pairs consisting of one element from set nyy and one element from set ynn,
-pairs consisting of one element from set nny and one element from set nyn.
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The first collection can be verified using Theorem 4. The remaining collec-
tions can be verified using Theorem 7 since they all consist of two elements that
are coprime, so the pairs generate the group.

Denote the union of these collections byM
Furthermore, observe that any subset of C does not generate the group (e.g.,

1 is not a multiple of 11 and so cannot be generated by C). Thus, any coalition
S /∈M must either not generate the group or must contain at least one element
of A ∪B.

Now observe that the excess of the conjectured prenucleolus for each coali-
tion S ∈ M is χ(ν, S) = 4862

4351 − 2431 = −10, 572, 419
4351 . If S ⊂ C, then

χ(ν, S) = 0 − w(S) ≥ −221. Finally, if S /∈ M is not a subset of C, then
χ(ν, S) ≥ 4862

4351 − 2431 = −10, 572, 419
4351 . Thus, the minimum excess for the

allocation ν is −10, 572, 419
4351 .

Now suppose that y is the prenucleolus. By the previous paragraph, the
minimum excess of y must be at least −10, 572, 419

4351 . Specifically, - χ(y, {i}) ≥

−10, 572, 419
4351 if i ∈ A; and

- χ(y, {i, j}) ≥ −10, 572, 419
4351 if i ∈ nny and j ∈ ynn; and

- χ(y, {i, j}) ≥ −10, 572, 419
4351 if i ∈ nny and j ∈ yyn; and

- χ(y, {i, j}) ≥ −10, 572, 419
4351 if i ∈ nyn and j ∈ ynn; and

- χ(y, {i, j}) ≥ −10, 572, 419
4351 if i ∈ nyn and j ∈ yny; and

- χ(y, {i, j}) ≥ −10, 572, 419
4351 if i ∈ nyy and j ∈ ynn; and

- χ(y, {i, j}) ≥ −10, 572, 419
4351 if i ∈ nny and j ∈ nyn.

Substituting in the definition of excess and the worth function and simpli-
fying, we get
- yi ≥

4862
4351 if i ∈ A

- yi + yj ≥
4862
4351 if i ∈ nny and j ∈ ynn

- yi + yj ≥
4862
4351 if i ∈ nny and j ∈ yyn

- yi + yj ≥
4862
4351 if i ∈ nyn and j ∈ ynn
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- yi + yj ≥
4862
4351 if i ∈ nyn and j ∈ yny

- yi + yj ≥
4862
4351 if i ∈ nyy and j ∈ ynn

- yi + yj ≥
4862
4351 i ∈ nny and j ∈ nyn

We organize the inequalities in the first column of the following table. The
next seven columns give the number of inequalities that contain yi for each i in
the set specified in the header row. The ’number’ column gives the number of
inequalities of each type.

Inequalities A B C number weight
yi ≥

4862
4351 , i ∈ A 1 0 0 1920 1

yi + yj ≥
4862
4351 , i ∈ nny, j ∈ ynn 0 120 192 120 · 192 = 23040 α

yi + yj ≥
4862
4351 , i ∈ nny, j ∈ yyn 0 120 16 120 · 16 = 1920 1/120

yi + yj ≥
4862
4351 , i ∈ nyn, j ∈ ynn 0 160 192 160 · 192 = 30720 β

yi + yj ≥
4862
4351 , i ∈ nyn, j ∈ yny 0 160 12 160 · 12 = 1920 1/160

yi + yj ≥
4862
4351 , i ∈ nyy, j ∈ ynn 0 10 192 10 · 192 = 1920 1/192

yi + yj ≥
4862
4351 , i ∈ nny, j ∈ nyn 0 280 0 120 · 160 = 19200 γ

We need to find coefficients α, β, and γ such that when we multiply each
inequality by its weight and sum over all inequalities, every element would be
counted only once.

Therefore, the needed coefficients can be obtained through solving the following
equations.

160α+ 192β + 16
120 = 1

160γ + 120β + 20
192 = 1

120α+ 192γ + 12
160 = 1

Therefore, α = 1
480 , β = 1

360 , and γ = 9
2560 .

9



Multiplying every inequality by its weight and summing over, we obtain
104∑
i=1

xi ≥ 2431. The left hand side equals 2431, so all inequalities must hold with

equality. Then, yi = 4862
4351 for i ∈ A and yj = 4862

8702 for j ∈ B ∪C. Thus y = x.

The examples provided are indeed not sufficient to prove the conjecture.
However, for the sake of keeping this paper as short as possible, proofs ofparts
of the conjecture are not included.
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