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Abstract

Mathematicians use the term cooperative game to describe a situation in
which members of a group acquire pro�t as a result of a joint venture. The
known methods for dividing the pro�ts between members (players) require
knowing the pro�ts that every possible subset of the group would have earned.
A player�s portion of the pro�t is calculated based on the performance of each
coalition that he would have been part of. In this paper, we consider several
ways of applying a particular popular method to cases when full information
about the smaller coalitions is unavailable.
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1. Introduction
Meet Alan, Bob and Casper. A, B and C, as we will refer to them from now
on, are three thugs who have just completed their jail sentences. All of them
were used to working in a team and in their �rst attempts to operate solo, each
found that he could not garner a single cent of pro�t. So A teamed up with B
and at the end of their �rst week, they had $3000 to split between the two of
them. B decided to take a vacation and A, for a time, formed a coalition with
C, resulting in a pro�t of $2000. When B got back, A decided to go visit his
grandmother, leaving B and C to work together. However, this coalition was
less successful than the previous two, garnering no pro�t whatsoever. When
A got back, he decided to form the Grand Coalition. Within the �rst week of
working together, the three thugs made $5000! Should they split it evenly?
Had not past experience shown that, without A�s great mind, B and C were
worth nothing? Not wanting to cause disputes within the Grand Coalition, the
thugs kidnapped a mathematician to divide the money for them with utmost
fairness.
The �rst thing the mathematician did was obtain all the information on

the worths of the smaller coalitions (that is, how much money they made),
including those he called single-player coalitions. He called them all players
now.

coalition worth
A 0
B 0
C 0
AB 3000
AC 2000
BC 0
ABC 5000

This was a lot like making a value table for a function, except that the do-
main of this function, which the mathematician called a cooperative game and
dubbed v for short, was not the real numbers but rather the set of all possible
coalitions of players. The mathematician then jotted down the requirements
that the players had for his method of allocation. First, it had to be a formula
that would work for any amount of money and that would split the entire
sum among A,B and C. Second, should it become known that the coalition
AB, for example, had actually made more than $3000, the sum allocated to
either of these players should not become smaller. An allocation method for
cooperative games known as the Shapley formula satis�es these conditions. It
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is based on each player�s marginal contribution to every coalition he is part of.
In other words it compares the worth of every coalition S involving player i
with the worth of the coalition Snfig. The portion of the pro�ts given to the
player, his Shapley value, is de�ned as

'i =
X

S�N;i2S

(n� s)!(s� 1)!
n!

[v(S)� v(Snfig)] (1)

where N is the set of all players and n; s are the the number of players in the
grand coalition and in coalition S, respectively. In our game1,

'A =
1

3
[v(ABC)� v(BC)] +

1

6
[v(AB)� v(B)] +

1

6
[v(AC)� v(C)] = 2500

'B =
1

3
[v(ABC)� v(AC)] +

1

6
[v(AB)� v(A)] +

1

6
[v(BC)� v(C)] = 1500

'C =
1

3
[v(ABC)� v(AB)] +

1

6
[v(AC)� v(A)] +

1

6
[v(BC)� v(B)] = 1000

So, mathematicians know of a way to divide any amount between any num-
ber of players in a consistent and fair manner. What is the purpose of this
research then? The problem is that we do not always know the worth of every
possible coalition within a game. We can make estimations of these worths,
but in a large game this can become a long and costly process, since the num-
ber of possible coalitions grows exponentially with the number of players. And
to make the allocation using the Shapley formula we need to know each and
every one. This paper is concerned with �nding allocations for partially de-
�ned games (sometimes shortened PDGs), cooperative games de�ned only over
coalitions of certain sizes. Associated with each PDG w is a set J containing
the sizes of coalitions whose worths are known. This terminology and nota-
tion were �rst introduced by Letcher in 19902. The types of PDGs you will see
in this paper include even-player games in which the worths of all coalitions
involving exactly half of the players are unknown (J = Nnfn

2
g), and games

where all worths are unknown except for the grand coalition, single-player
coalitions and the coalitions involving all players but one (J = f1; n� 1; ng).
All games we will look at are zero-normalized, that is, reduced to a form where
all single-player coalitions are worth 0.

1There is another term, v(A)�v(;), but since the worths of all single player coalitions in
this game (and in all other games we will consider) are 0, we have eliminated it from these
equations.

2Letcher D.(1990) The Shapley Value on Partially De�ned Games. Research Experiences
for Undergraduates Final Report
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Our method of dealing with these games will be �rst to impose a reasonable
restriction on the unknown worths. For example, we can assume that our game
is monotonic. That is, adding another player to any of the coalitions does not
bring down the worth of that coalition or, more formally,

v(S) � v(S + fig); for all i 2 NnS; S � N (2)

A superadditive game implies an even stronger restriction - cooperation is
never harmful. Any two coalitions joining forces are worth at least as much as
the sum of their pro�ts before the merger:

v(P ) + v(Q) � v(P [Q) for all P;Q � N;P \Q = ? (3)

An extension of a PDG is a fully de�ned game that takes the known worths
from the PDG and assigns some values to the unknown worths. Making an
assumption of monotonicity or superadditivity con�nes all �legitimate�exten-
sions of the PDG within a convex region of the (2n � 1)-dimensional space of
coalitions. The approach used throughout the �rst three sections of this pa-
per is �nding the �central�extension in this region and applying the Shapley
formula to it. Various centers are considered, among them the center of mass,
the coordinate center and the Chebyshev center.
In the �rst three sections of the paper, we �nd the centroid and coordinate

centers of even-player superadditive games with J = Nnfn
2
g. Section 4 de-

velops an algorithm for approximating the centroid of a monotonic game with
J = Nnfk�1; kg where 2 < k < n. The last two sections deal with monotonic
PDGs with J = f1; n � 1; ng. In section 5, we de�ne the Chebyshev center
extension and relate it to the coordinate extrema center found by another au-
thor. In section 6, we propose a new method for �nding a fair allocation on
a partially de�ned game. Instead of �nding a central extension, we apply the
Shapley formula to the entire region, mapping it from the space of coalitions
into a region in the lower-dimensional space of players. We then use our no-
tion of fairness to �nd a central point within that region representing our �nal
solution.
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2. Centroid for J=Nn{n
2
}

De�nition 1. The center of mass or centroid of a convex region in Rm is a
point �x 2 Rm such that

�xi =

R R
D

:::
R
xidx1dx2:::dxm

V
(4)

where V denotes the volume of the region and the limits of integration are its
borders.

Lemma 1. Suppose x 2 Rm is the centroid of a convex subset A of Rm and
y 2 Rn is the centroid of a convex subset B of Rn. Then (x; y) is the centroid
of

A�B = f(a; b) : a 2 A and b 2 Bg:

Proof. The ith coordinate of the centroid of A�B for 1 � i � m isR
� � �
R
A�B ai da1 � � � damdb1 � � � dbnR

� � �
R
A�B da1 � � � damdb1 � � � dbn

=

R
� � �
R
A
ai da1 � � � dam

R
� � �
R
B
db1 � � � dbnR

� � �
R
A
da1 � � � dam

R
� � �
R
B
db1 � � � dbn

=

R
� � �
R
A
ai da1 � � � damR

� � �
R
A
da1 � � � dam

which is the ith coordinate of the centroid of A. A similar calculation shows
that the (m+ i)th coordinate of the centroid of A�B for 1 � i � n is the ith
coordinate of the centroid of B.

Lemma 2. Suppose 0 � x0 � 1 and 0 � y0 � 1: Let

C = f(x; y) : 0 � x � x0; 0 � y � y0; x+ y � 1g:

Then the centroid of C is the point [�x; �y] such that, for x0 + y0 < 1, �x = x0
2

and �y = y0
2
. For x0 + y0 � 1,

x =
1

3

3x20 � 2x30 � (1� y0)
3

2x0 � x20 � (1� y0)2
and

y =
1

3

3y20 � 2y30 � (1� x0)
3

2y0 � y20 � (1� x0)2

Proof.
Case 1: x0 + y0 � 1. x + y � 1 holds for any x; y 2 C so that C can now

be written as f(x; y) : 0 � x � x0; 0 � y � y0g, a rectangle with side lengths
x0; y0. The centroid of a rectangle is �x = x0

2
and �y = y0

2
.
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Case 2: x0 + y0 > 1. C is a rectangle minus an isosceles right triangle.
Adapting the de�nition of centroid given above (4), the centroid of a two-
dimensional region is given by [�x; �y] such that

x =

R R
D

x dy dx

A

y =

R R
D

x dy dx

A
The area of C for x0 + y0 � 1 is

AC = x0y0 �
(x0 + y0 � 1)2

2

Substituting AC and the boundaries of C into the above de�nition, we
obtain

x =

1�y0R
0

y0R
0

x dy dx+
x0R

1�y0

1�xR
0

x dy dx

x0y0 � (x0+y0�1)2
2

y =

1�y0R
0

y0R
0

y dy dx+
x0R

1�y0

1�xR
0

y dy dx

x0y0 � (x0+y0�1)2
2

The numerator of x expands to

1�y0Z
0

(x y0) dx+

x0Z
1�y0

x (1� x) dx

= y0
(1� y0)

2

2
+
x20
2
� x30
3
� (1� y0)

2

2
+
(1� y0)

3

3

=
(1� y0)

3

3
� (1� y0)

3

2
+
x20
2
� x30
3

=
3x20 � 2x30 � (1� y0)

3

6

Similarly, the numerator of y becomes

3y20 � 2y30 � (1� x0)
3

6
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Expanding the denominator and simplifying, we obtain

x =
1

3

3x20 � 2x30 � (1� y0)
3

2x0 � x20 � (1� y0)2

y =
1

3

3y20 � 2y30 � (1� x0)
3

2y0 � y20 � (1� x0)2

QED

De�nition 2. For a partially de�ned game w de�ne

wmin(S) = maxfw(P ) + w(Q) : P;Q � N;P [Q = S; P \Q = ?; fp; qg � Jg

wmax(S) = minfw(S [Q)� w(Q) : Q � NnS; q 2 Jg

Theorem 3. Suppose w is a zero-normalized partially de�ned game such that
J = Nnfn=2g where n is even. If w is the superadditive centroid extension of
game w then, for all jSj =2 J

w(S) =

8<:
wmin(S) + l(S)=2 if l(S) + l(NnS) � "(S)

wmin(S) + 1
3
3"(S)l(S)2�2l(S)3�["(S)�l(NnS)]3
2"(S)l(S)�l(S)2�["(S)�l(NnS)]2

if l(S) + l(NnS) > "(S)

where
l(S) = wmax(S)� wmin(S)

and
"(S) = "(NnS) = w(N)� wmin(S)� wmin(NnS):

Proof. We claim that �w is a superadditive extension of w if and only if, for
all S � N;

�w(S) = w(S) for all s 6= n

2
(5)

and

wmin(S) � �w(S) � wmax(S) (6)

and
�w(S) + �w(NnS) � w(N) (7)
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Indeed, suppose (5), (6), and (7) hold for all S � N . By (5), �w is an
extension of w. Suppose P;Q � N satis�es P \ Q = ;. To show that �w is
superadditive, we will show that �w(P ) + �w(Q) � �w(P [Q). By (6), if q 2 J ,
then �w(P ) � wmax(P ) � �w(P [ Q) � �w(Q) which implies �w(P ) + �w(Q) �
�w(P [Q). Similary, if p 2 J , then �w(Q) � wmax(Q) � �w(Q[P )� �w(P ) which
implies �w(P ) + �w(Q) � �w(P [ Q). Finally, if p; q =2 J , then p = q = n

2
and

Q = NnP (because P \Q = ;), and so (7) implies �w(P ) + �w(Q) � �w(P [Q).
Thus, �w is a superadditive extension of w.
Conversely, suppose �w is a superadditive extension of w. Suppose S � N .

Condition (5) holds because �w an extension, and (7) follows directly from
superadditivity of �w. Since �w is superadditive, �w(S) � �w(S [ Q) � �w(Q) for
all Q � NnS which implies �w(S) � wmax(S), and �w(S) � w(P )+w(Q) for all
P;Q � N satisfying P [Q = S and P \Q = which implies wmin(S) � �w(S).
So, (6) holds.
As we have just seen, the only coalition of unknown worth a¤ecting the

worth of coalition S; s = n
2
is the coalition of all other players NnS. We

can, therefore, separate all coalitions of size n=2 into pairs and look at the
region 
 containing all superadditive extensions of w as a direct product of
N !

(N=2)!2
regions of the form.

# = f(x; y) : wmin(S) � x � wmax(S); wmin(NnS) � y � wmax(NnS); x+ y � w(N)g
= f(wmin(S) + x;wmin(NnS) + y) : 0 � x � l(S); 0 � y � l(NnS); x+ y � "(S)g
= f(wmin(S) + "(S)x;wmin(NnS) + "(S)y) : (8)

0 � x � l(S)="(S); 0 � y � l(NnS)="(S); x+ y � 1g
(9)

Being a center of mass, the centroid of a region is covariant with respect
to translations and scale changes. So, we can �nd the centroid of # by using
the centroid of the region C from Lemma 2, setting x0 = l(S)="(S) and y0 =
l(NnS)="(S), and then scaling the result by the factor "(S) and shift it right
by wmin(S) and up by wmin(NnS). Hence, the S coordinate of the centroid of
# is

For l(S) + l(NnS) � "(S); w(S) = wmin(S) + l(S)=2
For l(S) + l(NnS) > "(S); w(S) = wmin(S)+

+1
3
3"(S)l(S)2�2l(S)3�["(S)�l(NnS)]3
2"(S)l(S)�l(S)2�["(S)�l(NnS)]2

QED
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Figure 1. Visual representation of region # for l(S) + l(NnS) > "(S)
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3. Coordinate Center for J=Nn{n/2}
De�nition 3. A coordinate center of a convex set C � Rm is a vector x which
is the midpoint of fx+�ei : � 2 Rg\C for all i = 1; 2; : : : ;m where ei denotes
a vector in Rm such that it�s ith element is 1 and all other elements are 0.

De�nition 4. For u; v 2 Rm and C � Rm, let the element-wise product of u
and v, (u � v), be a vector w such that wi = (u � v)i = uivi: De�ne u � C as
C 0 = fu � x : x 2 Cg.

In the following lemma, we show that coordinate centers are covariant with
respect to scale changes and translations.

Lemma 4. Let C be a convex set in Rm and let a; b 2 Rm, where all elements
of a are non-zero. If x 2 Rm is a coordinate center of C, then a � x + b is a
coordinate center of a � C + b

Proof. By de�nition of a coordinate center (see above), x is the midpoint
of the line segment Yi = fx + �ei : � 2 Rg \ C for all i = 1; :::;m. We need
to show that z = a � x + b is the midpoint of all line segments of the form
fz+ �ei : � 2 Rg\ a �C + b. Let � = �ai. Since ai is non-zero and R is closed
under multiplication, � 2 R implies �ai 2 R and

fz + �ei : � 2 Rg = fa � x+ b+ �aiei : �ai 2 Rg
= fa � x+ b+ ai(�ei) : � 2 Rg
= fa � x+ a � �ei + b : � 2 Rg
= fa � (x+ �ei) : � 2 Rg+ b

= a � fx+ �ei : � 2 Rg+ b

for all i. So fz + �ei : � 2 Rg \ a � C + b = a � Yi + b. The midpoint of the
scaled and translated segment will be the scaled and translated midpoint of
the original segment, z = a � x+ b. QED

Lemma 5. Suppose x 2 Rm is the coordinate center of a convex subset A of
Rm and y 2 Rn is the coordinate center of a convex subset B of Rn. Then
(x; y) is the coordinate center of

A�B = f(a; b) : a 2 A and b 2 Bg:

Proof. Follows directly from the de�nition of the coordinate center.
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Lemma 6. Suppose 0 � x0 � 1 and 0 � y0 � 1: De�ne C as in the previous
chapter:

C = f(x; y) : 0 � x � x0; 0 � y � y0; x+ y � 1g:
Then

[x0; y0] =

8>>><>>>:
[x0
2
; y0
2
] if y0 < 1� x0

2
and x0 < 1� y0

2

[
1� y0

2

2
; y0
2
] if y0 < 2

3
and x0 � 1� y0

2

[x0
2
;
1�x0

2

2
] if x0 < 2

3
and y0 � 1� x0

2

[1
3
; 1
3
] if y0 � 2

3
and x0 � 2

3

is the unique coordinate center of C.

Proof. We �rst show that the point de�ned in the lemma is a coordinate
center of C:
1. If y0 < 1� x0

2
and x0 < 1� y0

2
then [x0; y0] = [x0

2
; y0
2
].

Since y0 < 1�x0
2
a line through [x0; y0] parallel to the y-axis will intersect the

boundary at point p1 = [x02 ; y0] and not [
x0
2
; 1� x0

2
]. The same line will intersect

the boundary at point p2 = [x02 ; 0]. Similarly, since x0 < 1�
y0
2
a line parallel

to the x-axis will intersect the boundary at p3 = [x0;
y0
2
] and p4 = [0;

y0
2
]: The

length of the line segment connecting [x0; y0] and p1 is equal to length of the
line segment connecting [x0; y0] and p2 and the segments connecting [x0; y0] to
p3 and p4 are also equal in length. By de�nition of a coordinate center [x0; y0]
is a coordinate center of C.
2. If y0 < 2

3
and x0 � 1� y0

2
then [x0; y0] = [1�

y0
2

2
; y0
2
] is a coordinate center

of C.
Since x0 � 1 � y0

2
, a line through [1�

y0
2

2
; y0
2
] parallel to the x-axis will

intersect the boundary at [1 � y0
2
; y0
2
] as well as [0; y0

2
]. The distance from

[x0; y0] to both points is 1�
y0
2

2
: y0 <

2
3
implies 3

2
y0 < 1 which implies 2y0 < 1+

y0
2

implying 2y0 < 2� (1� y0
2
) which in turn implies y0 < 1�

1� y0
2

2
. Therefore, a

line through [x0; y0] parallel to the y-axis will intersect the boundary at [x0; y0]:
The distances between [x0; y0] and [x0; 0] and between [x0; y0] and [x0; y0] are
equal. By de�nition, [x0; y0] is a coordinate center of C.

3. If x0 < 2
3
and y0 � 1� x0

2
then [x0; y0] = [x0

2
;
1�x0

2

2
] is a coordinate center

of C.
Interchanging the x0 with y0 and x0 with y0 in the proof for case 2, we

obtain the proof for case 3.
4. If y0 � 2

3
and x0 � 2

3
then [x0; y0] = [1

3
; 1
3
] is a coordinate center of C.

Since y0 � 1� x0 = 2
3
a line through [x0; y0] parallel to the y-axis will inter-

sect the boundary at [1
3
; 0] and [1

3
,2
3
]: Similarly, a line through [x0; y0] parallel

to the x-axis will intersect the boundary at [0; 1
3
] and [2

3
; 1
3
]:The distance from
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[x0; y0] to each of these points is 1
3
. According to the de�nition, [x0; y0] is a

coordinate center of C.
To prove uniqueness let [x00; y00] be a coordinate center of C. We will show

that [x00; y00] = [x0; y0].
If 1�y00 > x0 then a line through [x00; y00] parallel to the x-axis will intersect

the boundary of C at [0; y00] and at [x0; y00] before [1 � y00; y00] which implies
x00 = x0

2
, the midpoint. If, on the other hand, 1 � y00 � x0 then the line will

intersect the boundary of C at [0; y00] and [1� y00; y00] which implies x00 = 1�y00
2
.

Similarly, if 1� x00 > y0;then a y00 =
y0
2
and otherwise y00 = 1�x00

2
:

Let us look at four cases:
If 1 � y00 > x0 and 1 � x00 > y0 then x00 = x0

2
and y00 = y0

2
: Substituting

these values back into the inequalities,we get y0 < 1� x0
2
and x0 < 1� y0

2
:

If 1 � y00 � x0 and 1 � x00 > y0 then y00 =
y0
2
and x00 = 1�y00

2
=

1� y0
2

2
:

Substituting y0
2
into the �rst inequality get x0 � 1 � y0

2
. Substituting 1� yo

2

2

into the second inequality get y0 < 1�
1� y0

2

2
=) 2y0 < 1+

y0
2
=) 3

2
y0 < 1 =)

y0 <
2
3
.

Similarly if 1�y00 > x0 and 1�x00 � y0, x00 = x0
2
and y00 = 1�xo

2

2
: Substituting

back, get x0 < 2
3
and y0 � 1� x0

2
:

If 1� y00 � x0 and 1� x00 � y0 then x00 =
1�y00
2
and y00 = 1�x00

2
: Substituting

1�x00
2
for y00 into the �rst equation, get x00 = 1

3
. Substituting 1

3
for x00 into the

second equation, get y00 = 1
3
. Substituting x00 = y00 = 1

3
get y0 � 2

3
and x0 � 2

3

.
[x0; y0] = [x00; y00] for all values of y0 and x0: Therefore [x0; y0] is a unique

coordinate center of C.
QED

Theorem 7. Suppose w is a zero-normalized, superadditive partially de�ned
game such that J = Nnfn=2g where n = jN j is even. If �w is the coordinate
center extension of w then, for all S � N; jSj = n

2

�w(S) =

8<:
wmin(S) + 1

2
"(S)� 1

4
l(NnS) if l(S) < 2

3
"(S) and l(NnS) � "(S)� l(S)

2

wmin(S) + 1
3
"(S) if l(S) � 2

3
"(S) and l(NnS) � 2

3
"(S)

wmin(S) + l(S)
2

elsewhere

where
"(S) = "(NnS) = w(N)� wmin(S)� wmin(NnS)

and
l(S) = wmax(S)� wmin(S).
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Proof.
As we have shown in the proof to Theorem 1, the region 
 containing all

superadditive extensions of w can be viewed as a direct product of the regions

#k = f(wmin(Tk) + "(Tk)x;w
min(NnTk) + "(Tk)y) :

0 � x � l(Tk)="(Tk); 0 � y � l(NnTk)="(Tk); x+ y � 1g; k = 1:::d
where d = N !

2(N=2)!2
is the number of distinct T;N=T pairs. Each region de�nes

two dimensions of 
 corresponding to coalitions T;N=T .
Let

� = [1="(T1); 1="(T1); 1="(T2); 1="(T2); :::; 1="(Td); 1="(Td)]

� = [wmin(T1); w
min(NnT1); :::; wmin(Td); wmin(NnTd)]

F (S) = l(S)="(S)

Let


0 = � � (
� �)


0 is a direct product of

#0k = f(x; y) : 0 � x � F (S); 0 � y � F (NnS); x+ y � 1g; k = 1:::d
According to Lemmas 4 and 5, the coordinate center of 
0 is a vector

x 2 R2�d such that, for every k = 1; :::; d, (x2k�1; x2k) = (xTk ; xNnTk) =8>>>><>>>>:
[F (Tk)

2
; F (NnTk)

2
] if F (NnTk) < 1� F (Tk)

2
and F (Tk) < 1� F (NnTk)

2

[
1�F (NnTk)

2

2
; F (NnTk)

2
] if F (NnTk) < 2

3
and F (Tk) � 1� F (NnTk)

2

[F (Tk)
2
;
1�F (Tk)

2

2
] if F (Tk) < 2

3
and F (NnTk) � 1� F (Tk)

2

[1
3
; 1
3
] if F (NnTk) � 2

3
and F (Tk) � 2

3

Since Nn(NnT ) = T , we can rewrite this as

xS =

8><>:
1�F (NnS)

2

2
if F (NnS) < 2

3
and F (S) � 1� F (NnS)

2
1
3

if F (NnS) � 2
3
and F (S) � 2

3
F (S)
2

elsewhere

Let �0 be a vector such that �0i = 1=�i for all i = 1:::2d. According to
Lemma 3, the coordinate center of 
 = �0 �
0+ b is de�ned by �w = �0 �x+ b.
Performing the scale change and translation and simplifying, we obtain

�w(S) =

8<:
wmin(S) + 1

2
"(S)� 1

4
l(NnS) if l(S) < 2

3
"(S) and l(NnS) � "(S)� l(S)

2

wmin(S) + 1
3
"(S) if l(S) � 2

3
"(S) and l(NnS) � 2

3
"(S)

wmin(S) + l(S)
2

elsewhere

QED.
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4. Distance Between Centers of J=Nn{n/2}
The following theorem is useful when the coordinate center is used as an
approximation of the centroid of the game.

Theorem 8. If w is the centroid extension of game w where J = Nnfn=2g
and �w is its coordinate center extension then the Euclidian distance between
w and �w is less than or equal to

Emax =
1

72

s
10

X
S;s=n=2

"(S)2

where "(S) = "(NnS) = w(N)� wmin(S)� wmin(NnS):

Proof. As we have already shown, the set of superadditive extensions of w
can be represented as the direct product of sets of the form

# = f(wmin(T ) + "(T )x;wmin(NnT ) + "(T )y) :

0 � x � l(T )="(T ); 0 � y � l(NnT )="(T ); x+ y � 1g

The centroid and coordinate center extensions of w were found by consid-
ering the centroid and coordinate center of

C = f(x; y) : 0 � x � x0; 0 � y � y0; x+ y � 1g:

So it seems logical that we should now revert back to this set and inves-
tigate the distance between its centroid and coordinate center. A detailed
investigation of extrema points of the function

D =
p
(x0 � �x)2 + (y0 � �y)2

(see Appendix) reveals a maximum of
p
5
36
at
�
1; 2

3

�
and

�
2
3
; 1
�
where

D =

r
1

362
+

4

362

Rescaling by "(S) we obtain
p
5
36
"(S) =

q�
1
36
"(S)

�2
+
�
2
36
"(NnS)

�2
as the

maximum distance between the centroid and coordinate center of region #: It
follows that for the set of all superadditive extensions, the distance will bevuutX �

1

36
"(S)

�2
+

�
2

36
"(NnS)

�2!

13



where the summation is over all pairs fS;NnSg:We rewrite this as a summa-
tion over all S using the equality of "(S) and "(NnS):sX�

1

36
"(S)

�2
+
X�

2

36
"(NnS)

�2
=

r
1

362

X
"(S)2 +

4

362

X
"(S)2

=
1

36

q
5
X

"(S)2 =
1

36

s
1

2
� 5

X
S;s=n=2

"(S)2

QED
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5. Approximation of centroid for J=Nn{k-1,k}
The algorithm provides a computational approach to �nding the centroid of
a game where the worths of coalitions of two consecutive sizes are unknown.
If we could generate a large number of points randomly distributed within a
region, the average of these points can be used as an approximation of the
center of mass.
How do you generate the points? Let us take as an example the two-

dimensional right triangle in Figure 2. The two shorter sides are 5 units each.
In trying to �ll it with random points, if we �rst generated an x-coordinate in
the range of 0 to 5, then a y-coordinate in the range of 0 to 5 � x, we would
end up with a far greater concentration of points in the vicinity of vertex
B. In order to achieve a good distribution, we need to generate more points
with a smaller x-coordinate. Or, we can make our �nal calculation a weighted
average, where a point [x; y] will be weighted based on the length of 5� x.

Figure 2. One must be careful when trying to uniformly distribute random
points within a region.

The algorithm proceeds like this: given a monotonic partially de�ned game
w where Jw = Nnfk � 1; kg, we de�ne V min and V max as the top and bottom
limits on the worth of S (by monotonicity). Then we randomly generate the
worths for all coalitions T of size k in the range from the maximum lower limit
among the coalitions of size k � 2 that are contained in T to the upper limit
on T itself, determined by the worths of coalitions of size k + 1 that contain
T . Thus we obtain a partially-de�ned game _w where J _w = Nnfk � 1g. We
then �nd the volume and the centroid of the set of monotonic extensions of _w:
This is easy because the set is a hyper-cuboid whose side corresponding to a
coalition S of size k � 1 will range from the maximum worth of all coalitions

15



of sizek� 2 contained in S to the minimum worth among all coalitions of size
k that S is a subset of. By repeating this procedure a large number of times,
we obtain the set of fully de�ned games �w with their associated weights. Our
result is obtained by averaging these games.
The Algorithm.
Let w be a zero-normalized, monotonic partially de�ned game such that

J = Nnfk � 1; kg:
Let

V min(S) = max
i2S

w(Snfig)

V max(S) = min
i2NnS

w(S + fig):

Let Z be a large integer. For t = 1 to Z do steps 1 - 3.
1. For all S � N such that s = k;let Vt(S)be a uniformly distributed

random number between maxi2S V min(Snfig)and V max(S):
2. Let At =

Q
T�N;t=k�1

(mini2NnS Vt(T [ fig)� V min(T ))

3. For all T � N such that t = k�1;let Vt(T ) = 1
2
(V min(T )+mini2NnS Vt(T[

fig))
The centroid extension of w can be approximated by �w where, for all P of

size k or k � 1,

�w(P ) =

ZP
t=1

[At � Vt(P )]

ZP
t=1

At
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6. Chebyshev center for J={1,n-1,n}

The Chebyshev center is de�ned as the center of the smallest sphere containing
all points in the set or a point at which the maximum distance to a point in
the set is minimized.

De�nition 5. Let E(x) denote the subset of points in a set Z which have the
largest distance from a point x. For an arbitrary set X � Rm the convex hull
of X is de�ned as a set H of all points h 2 Rm such that, for some positive
integer k, some points x1; x2; :::xk in X and some positive numbers t1; t2; :::tk
such that

Pk
i=1 ti = 1, h =

Pk
i=1 tixi:

Lemma 9. ~x is the Chebyshev center of a set Z i¤ ~x is in the convex hull of
E(~x).

Proof.
Given by 3

De�nition 6. Let w denote a partially de�ned game such that J = f1; n �
1; ng and w(fig) = 0 and w(N) � w(N � fig) for all i 2 N . Renumber the
players so that w(N � f1g) � w(N � f2g) � ::: � w(N � fng): Let ai denote
w(N � fig). Let �(S) = minfi : i =2 Sg for all S � N such that jSj =2 J .

It is easy to see that

0 � ...w(S) � a�(S) for all S � N such that jSj =2 J (10)

is a necessary condition for
...
w to be a monotonic extension of w.

Theorem 10. If ~w is the Chebyshev center of the set of monotonic extensions
of w then, for all S =2 J;

~w(S) = 1
2
a�(S)

Proof.
Let

...
w1(S) = w(S) if jSj 2 J;

...
w1(S) = 0 if jSj =2 J . Let

...
w2(S) = w(S) if

jSj 2 J; ...w2(S) = ai(S) if jSj =2 J .
To prove that ~w(S) is the Chebyshev center of the set of zero-monotonic

extensions of w we will show that
1.
...
w1(S);

...
w2(S) 2 E( ~w(S)) with respect to the set of extensions.

3Botkin, N.D, Turova-Botkina, V.L. An algorithm for �nding the Chebyshev center of a
convex polyhedron. Journal Appl. Math. Optimization, Vol 29, No.2, pp.211-222
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2. ~w(S) can be represented as the convex combination of
...
w1(S);

...
w2(S) i.e.

for all S � N , ~w(S) = t
...
w1(S)+ (1� t)

...
w2(S) for some positive number t.

Both can be easily demonstrated. Indeed, the distance between ~w and
either

...
w1 or

...
w2 is

P
S�N;jSj=2J

1
4
a2i(S): Since, for a given S; 0 � w(S) � ai(S),

the di¤erence between w(S) and ~w(S) is always less than or equal to 1
2
ai(S).

So jj ~w � wjj2 �
P

S�N;jSj=2J

1
4
a2i(S): Setting t to

1
2
, obtain, for jSj 2 f1; n � 1; ng,

1
2

...
w1(S)+

1
2

...
w2(S) =

1
2
w(S)+ 1

2
w(S) = w(S) = ~w(S) by de�nition of extension.

For S =2 J; 1
2

...
w1(S)+

1
2

...
w2(S) = 0 +

1
2
ai(S) = ~w(S):

Brutt (1994) 4 obtained the same result for the coordinate extrema center
of this class of games and found its Shapley value. It is de�ned by

 i =
w(N)� an +

1
2
(a2 + a1)

n
+

n�1X
k=2

2n(n� 1)� (n� k � 1)(n� k)

2nk(n� 1) (ak+1 � ak)

+

� 1
2
(a2 � a1) if i = 1Pn�1
m=2

n�k�1
2n(n�1)(ak+1 � ak) if i 6= 1

An interesting side note is that, since this result is the same as obtained
by Brutt for the coordinate extrema center, the coordinate extrema center of
this type of game is equal to the Chebyshev center and therefore is also in the
convex hull of the set of extensions. Another observation is that this center
is not a center the way we normally see centers � instead of being �in the
middle�it situates itself on one of the edges of the polyhedron de�ned by the
monotonic extensions. The monotonicity property is given by the inequalities
w(P ) � w(Q) for any P;Q such that P � Q; while for the Chebyshev center
extension, the strict equality ~w(P ) = ~w(Q) holds for all such P;Q of size
between 2 and n� 2. See Figure 3.

4LeeAnne Brutt, A Value for Zero-monotonic Partially De�ned Games, manuscript
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Figure 3. The projection of the set of monotonic extensions into three
dimensions (N � i; N � ij; N � ijk)
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7. A new method for J={1,n-1,n}

In this section, we will look at the highest and the lowest payo¤ each player
could obtain according to the Shapley formula given the known coalition
worths. Our notion of fairness says that if a given player obtains a payo¤
at a certain point between his maximum and minimum payo¤s, then no other
player should be �closer�or �further�, in relative terms, from his maximum
payo¤. Therefore, we de�ne a fair allocation � as

�i = �'maxi + (1� �)'mini (11)

where 'maxi ; 'mini are the maximum and the minimum possible payo¤s to player
i and � is chosen so that

nX
i=1

�i = w(N). (12)

We will now show how this method can be applied to a game w where
J = f1; n�1; ng and w(fig) = 0 and w(N) � w(N �fig for all i 2 N and the
players are renumbered so that w(N�f1g) � w(N�f2g) � ::: � w(N�fng):
As in the de�nition in the previous section, we let ai denote w(N � fig) and
let �(S) = minfi : i =2 Sg for all S � N such that jSj =2 J .
We can rewrite the Shapley formula (equation 1) as

'i(v) =
nX
s=1

(n� s)!(s� 1)!
n!

X
S�N;jSj=s;i2S

[v(S)� v(S � fig)]

=
v(N)� ai

n
+

P
k 6=i ak � v(N � fi; kg)

n(n� 1)

+

Pn�2
s=3 (n� s)!(s� 1)!

P
S;jSj=s;i2S[v(S)� v(S � fig)]
n!

+

P
k 6=i v(fi; kg)
n(n� 1)

=
v(N)

n
+

Pn
k=1(ak � ai)

n(n� 1) +

P
k 6=i[v(fi; kg)� v(N � fi; kg)]

n(n� 1)

+

Pn�2
s=3 (n� s)!(s� 1)!

P
S;jSj=s;i2S[v(S)� v(S � fig)]
n!

This separates the part of the payo¤ dependent on the known values and that
dependent on the unknown values.
Since v(S) has a positive or negative coe¢ cient in the Shapley formula

whenever i 2 S or i =2 S, respectively, it follows from (10) that the monotonic
extension that maximizes 'i(ŵ) is
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ŵmaxi (S) =

�
a�(S); i 2 S
0; i =2 S

for all S � N satisfying jSj =2 J . The extension giving player i the lowest
payo¤ will minimize the worths of the coalitions that involve i and maximize
other worths. Indeed, if we raised the worths of all coalitions not containing i,
then we would have the situation where ŵmini (S; i =2 S) = a{̂(S) > ŵmini (S+fig):
In order not to violate the monotonicity constraint, this extension is de�ned
as

ŵmini (S) =

�
a�(S); i =2 S; jSj = n� 2
0; otherwise

Substituting ŵmaxi (S) for v(S) into the Shapley formula obtain the maxi-
mum payo¤s for each player.

'i(ŵ
max
i ) =

w(N)

n
+

Pn
k=1(ak � ai)

n(n� 1) +
1

n(n� 1) �

8<:
(n� 2)a2 + a3; i = 1
(n� 2)a1 + a3; i = 2
(n� 2)a1 + a2; i � 3

+

+
1

n!

n�2X
s=3

"
(n� s)!(s� 1)!

 
i�1X
p=1

�
n� p� 1
s� p

�
ap +

s+1X
q=i+1

�
n� q
s� q + 1

�
aq

!#

The minimum payo¤s are

'i(ŵ
min
i ) =

w(N)

n
+

P
(ak � ai)

n(n� 1) �
Pi�1

p=1 ap + (n� i)ai

n(n� 1)
Solving equations (11) and (12) for �, we obtain

� =

P
'maxi � w(N)P
'maxi �

P
'mini

where

X
'maxi = w(N) +

2(n� 2)a2 + 2a3 + (n� 2)(n� 1)a1
n(n� 1) +

Sum(w)

n!

X
'mini = w(N)� 1

n(n� 1)

n�1X
i=1

2(n� i)ai
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where Sum(w) can be written as

nP
i=1

n�2P
s=3

"
(n� s)!(s� 1)!

 
i�1P
p=1

�
n� p� 1
s� p

�
ap +

s+1P
q=i+1

�
n� q
s� q + 1

�
aq

!#

which, after some manipulation, can be reduced to

n�2X
s=3

(n� s)!(s� 1)!
n�1X
p=1

(n� p+ 1)

�
n� p� 1
s� p

�
ap

+
n�2X
s=3

(n� s)!(s� 1)!
sX
p=1

p

�
n� p� 1
s� p

�
ap+1

Then

� =
(n� 2)(n� 1)a1 + 2(n� 2)a2 + 2a3 + Sum(w)

(n�2)!

n(n� 1)a1 + 4(n� 2)a2 + (n� 1)a3 +
Pn�1

i=4 2(n� i)ai +
Sum(w)
(n�2)!

Since
...
wmaxi and

...
wmini are both superadditive, we have just found an allo-

cation for superadditive as well as monotonic games.
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