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Abstract

This paper introduces a graphical approach toward the study of several properties in a fair division problem with indivisible objects and monetary compensation. The properties include efficiency, envy-freeness, individual rational and individual stand-alone.  With observations into the dynamics of the set of allocations affected by the change of entries in an object valuation matrix, three property tests are discovered.
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1. Concepts and notations

Fair division problems involve dividing an object or a bundle of objects among a group of players fairly. The objects to be discussed in this paper are indivisible; in other words, any subset of players cannot share one single object or obtain part of the object as a result of the fair allocation. In addition, money compensation is allowed. An example for this would be an inheritance problem: three siblings trying to fairly allocate an estate consisting of four objects. Assume that the total number of player is m, and the total number of objects available is n.
A fair allocation is based on bidding results. Before using a particular method to acquire fairness, each player has to bid a value for each object. Name 
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player i’s bid on object p. In compensation, players pay a certain amount of money for the object they win. This amount of money goes to a money pot that is to be divided among players at the end of the allocation process. An allocation
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, as the result, consists of 1) a partition of the set of objects
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 each of which is distributed to the subscripted player; 2) real numbers 
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 each of which is the net amount of receipt for each player in monetary term. In addition, 
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. Note that in this paper, the second subscript is always the player to evaluate the objects or player who wins the objects represented in the first subscript

For the allocation 
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the valuation of player i is,


[image: image7.wmf]i

S

p

pi

M

u

i

v

i

+

=

å

Î

)

(


 In fact, in player j’s perspective, 
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player j’s evaluation on the objects player i wins. 
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 is thus i’s evaluation on the object he wins. 

Also, 


[image: image11.wmf]i

ij

M

V

ij

v

+

=

)

(


would be the total value player i wins in the perspective of j, including money terms.

We can summarize a fair division problem with an 
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 square matrix. Rows of this matrix are objects or bundles of objects, each of which is won by one certain player. Columns of the matrix are players. The object valuation matrix looks like:


[image: image13.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

-

-

mm

m

m

m

m

m

m

V

V

V

V

V

V

V

V

V

V

)

1

(

1

)

1

(

22

21

1

12

11

.

.

.

.

.

.

.

.

.

.


Along the diagonal of this matrix are the winning bids of each player. All other off-diagonal entries are some player’s evaluation on the object (bundle of objects) won by the highest bidder in the row of that object (bundle of objects). This form is helpful in analyzing envy-free solutions as well as individual rational and stand-alone solutions, with the aid of the graphic approach, all of which to be discussed later in this paper. 

An allocation is efficient if no other allocation is able to make every player at least as well of and some player strictly better off. It can be shown that in order for an allocation to be efficient, the highest bidder of an object should be awarded that object. In other words, for player i and j, it must satisfy that
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An allocation is individual rational if each player values his share of the allocation at least one-mth  of his value of the total estate: 
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. An allocation is individual stand-alone if each player values his own share of the allocation no more than his value of the total estate:
[image: image16.wmf]å

=

£

n

p

pi

u

ii

v

1

)

(

.  An allocation that satisfies both individual rational and individual stand-alone must satisfy 
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 for each player i.
An allocation is envy-free if no player would prefer another’s bundle to his or her own: That is, 
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for all players
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. In a fair division problem with two players A and B, two inequalities are required to ensure envy-freeness: A not-envy B (
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inequalities are required to ensure envy-freeness; this can be shown by multiplying the number of columns (n) and the entries in each row except for entry along the diagonal  (n-1) from the object valuation matrix.

2. An example

Suppose in a fair division problem players are A, B and C, and objects are a, b, c and d. Here’s a diagram of their biddings:

	
	A
	B
	C

	a
	28
	5
	15

	b
	10
	11
	3

	c
	26
	3
	17

	d
	14
	23
	6


         Table 1: 3 player bidding scheme

Each entry in the table is a bid. For example, 
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. A possible allocation is to give player A object a and c; give player B object b and d. Meanwhile, we ask A to pay 54 and B to pay 34 to the money pot. Next, when dividing the pot among A, B and C, A gets 8, B gets 50 and C gets 30. Therefore, the net monetary gains are: 
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. Both B and C are gaining money from this allocation, while A has to pay. Also note that
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, items that B wins are worth 24 in total in A’s perspective; 
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, A values B’s total gain as 40, including money term.  The Object Valuation Matrix would look like:
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This is an efficient allocation, since the diagonal entries of the matrix are their row max, which means the object is rewarded to the highest bidder. For example, 
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As we can see, 
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For A to be individual rational, A must be getting at least one-third of what he thinks the entire estate worth: 
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; any final value of allocation less than 26 will not be individual irrational for player A. For player A to be individual stand alone, 
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, thus A will envy B. However, if we give 50 to A and 8 to B from the money pot, and this change the money allocation to: 
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3. The graphical approach

It would be interesting to synthesize the properties efficiency, individual rational and stand-alone, and envy-free of a fair division problem with a single device. We can achieve this with a graphical tool. This graphical approach is constrained to a three-player game and it is served as a tool to lead to some observation of nature between allocation result and the bidding of the players. From there on, higher dimensional result is conjectured and proved.

Construct a coordinate system in three-dimensional space. Choose the axis to be
[image: image45.wmf])

(

),

(

),

(

C

v

B

v

A

v

. Thus, every point in this coordinate system is the valuation of possible allocation. All allocations that sum up to a constant, that is, 
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 would be a plane in the 3-D coordinate system. In addition, suppose that only positive values are considered. As we can see, the intersection of the plane and the coordinate system compose a triangle (Figure 1). 
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At three verticies of the triangle, are the maximun value each player can get out of the allocation. For example at point A, player A gets the most he can from the allocation and player B and C get nothing. An efficient allocation lies on the plane out-most in the positive direction. 

We need to do a transformation from the three-dimensional space to the two-dimensional surface of the triangle. Suppose any point 
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Suppose points in 3-D space are
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Perform the affine transformation, we can solve for the transformation matrix:
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To plot the graph, we just need to substitute 
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A graphing routine was made with Maple to illustrate areas of intersection of the several inequalities which are generated from the properties of envy-freeness, individual rational and individual stand-alone. (A copy of the routine is listed in appendix 2)

3. Results from envy-free property:

Three sets of inequalities are needed to condition envy-freeness in a three player game: 

Set 1, in figure 3(a):

Line 1: Player A not envy player B: 
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Line 2: Player B not envy player A: 
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Set 2, in figure 3(b):

Line 3: Player A not envy player C: 
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Line 4: Player C not envy player A: 
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Set 3, in figure 3(c):

Line 5: Player B not envy player C: 
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Line 6: Player C not envy player B: 
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Applying the affine transformation, we obtain the following graphs. Note that lines in these graphs are the equability forms of the inequalities. The area between a line and its correspondent point is the group of allocations that satisfies that particular envy-free inequality.
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In fact, the areas of intersection of these six inequalities, as one can tell from the form of these inequalities, are only dependent upon entries of the object valuation matrix:
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of this three-player game. Changes of entries from the matrix can affect the area of intersection dramatically. For example, if we start with the bidding scheme shown in figure 3(a), as 
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 increase (figure 3(b) and 3(c)), B is more likely to envy C, leaving the shaded envy-free area smaller and smaller.
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Considering the complexity of taking into account all six inequalities in a three-player game, or, n(n-1) inequalities in an n-player game, it might be helpful to know when some of the inequalities are irrelevant to the solution of set of envy-freeness (see figure 4). In fact, there is a way to check, at least in a three-player game:
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Proof: 
 
i) To prove that if 
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Therefore, any allocation that satisfies 
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ii) To prove by contrapositive that if i not envy j is irrelevant, then 
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This allocation satisfies all five envy-free inequalities except for 
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4. Results from individual rational and individual stand-alone property:

Again, graphical approach is used to study the property of individual rational and individual stand-alone. The result of individual rational solutions is in the shape of a triangle similar to the original triangle that contains all the allocation points (example in Figure 5(a)). The result of individual stand-alone is in the shape of an upside-down triangle (example in Figure 5(b))
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The set of individual stand-alone solutions and the set of individual rational solutions always intersect, and they can never completely overlap each other. There are cases, though, when one is the subset of the other. 

Theorem 2. For three-player game, the set of individual stand-alone solutions is a subset of the set of rational solutions, if and only if 
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combining this with 5), it yields that
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 since this holds for arbitrary k, v is individual rational

ii) Suppose 
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, we will exhibit an allocation that is individual stand-alone but not individual rational. 
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Clearly, v is an allocation and the individual stand-alone constraint for I and j are satisfied,. That the stand-alone constraint for player k holds will follow from the following argument showing that the individual rational constraint for player k is violated.

1) + 2)
[image: image149.wmf]kj

jj

ij

ki

ji

ii

V

V

V

V

V

V

j

v

i

v

+

+

+

+

+

=

+

Þ

)

(

)

(

     

3)

since 


[image: image150.wmf]k

kk

M

V

k

v

+

=

)

(

  

4)

3) + 4) 
[image: image151.wmf]k

kj

ij

ki

ji

kk

jj

ii

M

V

V

V

V

V

V

V

k

v

j

v

i

v

+

+

+

+

+

+

+

=

+

+

Þ

)

(

)

(

)

(


since 


[image: image152.wmf]kk

jj

ii

V

V

V

k

v

j

v

i

v

+

+

=

+

+

)

(

)

(

)

(


then,  


[image: image153.wmf]k

kj

ij

ki

ji

M

V

V

V

V

+

+

+

+

=

0


and  


[image: image154.wmf]k

kj

ij

ki

ji

k

kj

ij

ki

ji

M

V

V

V

V

M

V

V

V

V

3

3

3

3

3

3

3

3

3

3

0

-

=

+

+

+

Þ

+

+

+

+

=



5)

we assumed that,


[image: image155.wmf]kk

kj

ij

ki

ji

jk

ik

V

V

V

V

V

V

V

2

3

3

3

3

>

+

+

+

+

+


which is 


[image: image156.wmf])

3

3

3

3

(

3

kj

ij

ki

ji

kk

kk

jk

ik

V

V

V

V

V

V

V

V

+

+

+

-

>

+

+


combining this with 5), it yields that
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thus this allocation is not individual rational for player k.

Theorem 3. For player i, j and k, the set of individual rational solutions is a subset of the set of individual stand-alone solutions, if and only if 
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Proof:
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For any arbitrary k, v is individual stand-alone

ii) ) Suppose 
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, we will exhibit an allocation that is individual rational but not individual stand-alone. Clearly, v is an allocation and the individual rational constraints are satisfied. That the rational constraint for player k holds will follow from the following argument showing that individual stand-alone constraint for player k is violated.
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We assumed that:
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thus this allocation is not individual stand-alone for player k.

5. Conclusion

Using the graphs of a three-player fair division problem helps understanding the dynamics of each property discussed as well as capturing the interactions among each property. The object valuation matrix is a way of simplifying a fair division problem into a compact form aiding the formularization of the properties discussed. Theorem 1 includes a property test on the envy-free property. It helps avoiding unnecessary envy-free constraints in order to simplify the fair-division problem. Theorem 2 and theorem 3 include property tests on individual stand-alone and individual rational property. These two tests help avoid unnecessary individual stand-alone or individual rational constraints by finding out whether one is a subset of the other. Further work in this topic includes extending the property tests to an n-player game based on the 3-player game result; and exploring other properties in fair-division problems that are not listed in this paper.
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7. Appendix -- Maple graphing routine

> with(plots):
> A:=matrix([[50,5,5],[5,50,5],[5,5,50]]):

U:=(A[1,1]+A[2,2]+A[3,3]):
“A” matrix can be adjusted according to needs.
1. Envy-Free Efficiency Graph
The labeling of ineq is not correspondent to the lableing of graph, thus relableing is needed. 
> ineq1:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[A]>=V[B]-A[2,2]+A[2,1]);

ineq2:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[A]>=V[C]-A[3,3]+A[3,1]):

ineq3:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[B]>=V[A]-A[1,1]+A[1,2]):

ineq4:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[B]>=V[C]-A[3,3]+A[3,2]):

ineq5:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[C]>=V[A]-A[1,1]+A[1,3]):

ineq6:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[C]>=V[B]-A[2,2]+A[2,3]):
> U;

inequal({


ineq1,ineq2,ineq3,ineq4,ineq5,ineq6,


y>=0,


y<=sqrt(3)*x,


y<=-sqrt(3)*x+2*U},


x=0..2*U/sqrt(3),y=0..U,


scaling=CONSTRAINED, 


optionsclosed=(color=red, thickness=1),


optionsexcluded=(color=white)):

2. Individual Rational Graph
Individual rational says that each player's gain must be at least one third of the entire estate value in his or her view. 
> ineq7:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[A]>=1/3*(A[1,1]+A[2,1]+A[3,1]));

ineq8:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[B]>=1/3*(A[1,2]+A[2,2]+A[3,2]));

ineq9:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[C]>=1/3*(A[1,3]+A[2,3]+A[3,3]));

> inequal({


ineq7,ineq8,ineq9,


y>=0,


y<=sqrt(3)*x,


y<=-sqrt(3)*x+2*U},


x=0..2*U/sqrt(3),y=0..U,


scaling=CONSTRAINED, 


optionsclosed=(color=red, thickness=1),


optionsexcluded=(color=white)):
3. Individual Stand-Alone Graph
individule stand alone says that each player does not get more than what he thinks the entire estate worth
> ineq10:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[A]<=(A[1,1]+A[2,1]+A[3,1]));

ineq11:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[B]<=(A[1,2]+A[2,2]+A[3,2]));

ineq12:=subs(V[A]=-sqrt(3)/2*x-0.5*y+U,V[C]=y,V[B]=sqrt(3)/2*x-1/2*y,V[C]<=(A[1,3]+A[2,3]+A[3,3]));
> inequal({


ineq10,ineq11,ineq12,


y>=0,


y<=sqrt(3)*x,


y<=-sqrt(3)*x+2*U},


x=0..2*U/sqrt(3),y=0..U, 


scaling=CONSTRAINED, 


optionsclosed=(color=red, thickness=1),


optionsexcluded=(color=white)):
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