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Abstract
Often, fair division problems require players to compensate with money to satisfy the properties of a given allocation method.   In many cases the players would not have enough money to meet the requested compensations.  Under such circumstances a new method should be found to allocate the goods.  This paper analyzes three different methods of allocation for divisible objects: First-Price Auction, Knaster’s, and Equitable; and then applies the budget constraint to each of them.  These methods are illustrated with several examples.  The following properties of the allocation methods are discussed: Envy-freeness, Efficiency, and Individual Rationality.
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1. Introduction 
1.1 the problem

A fair division problem consists of dividing a set of goods and trading money among a number of people, which in this context are called players.  The goal of fair division is that each player gets a “fair share” of the set of goods.  More formally, there is a set of players N which consists of players i, where i = 1,2,,.., n. The set of goods L consist of goods  j, where  j = 1,2,,.., l.  Each player  i  has a monetary value  aij  on object  j  such that  aij ≥ 0,  that is the valuation  aij  of the  ith player for the  jth good is nonnegative.  The goods in this research are considered homogenous and divisible.  Each player is willing to give or receive money to help compensate for the allocation of goods; however, player  i is not willing to give more than  ci ≥ 0, where  ci  could be as high as  ∞.
An allocation method is used to obtain the “fair share” to every player involved. There are many allocation methods in fair division and every method has distinctive properties.  Each player’s allocation is represented with the following utility function,
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(1)
The allocation for player i, vi, is given by the fraction that player i receives for the jth good, xij, times player i’s valuation of that good, aij, summed over all the goods 1, 2,…, l, plus the money compensation, mi.  Each of the allocations vi are subject to a number of constraints listed as follows,

· xij ≥ 0 , each fraction the player  i  receives should be nonnegative;
· 
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, profit made should be distributed back among the players;

· 
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, every good  j  has to be totally distributed among the players; and

· mi ≥ - ci , the budget constraint which limits how much player  i  can compensate with money.  
1.1.1 example 1:
Let’s say that there is one good to be divided among three players,  N = {1, 2, 3},  with monetary valuations  a = [12, 10, 8]  and budget constraints  c = [8, 6, 3].  The good could be given to player 1 who gives 4 units of money to each of the other players resulting in the fractions  x = [1, 0, 0], monetary transfers  m = [-8, 4, 4], and valuations
v1 = 12*1 - 8 = 4
v2 = 10*0 + 4 = 4

v3 = 8*0 + 4 = 4

2. Allocation Methods
2.1 first-price auction

In first-price auctions the goods are sold to the highest bidder.  This money is collected and divided equally among the players.  The main objective of the first-price auction method is to give each of the players an equal allocation. That is, v1 = v2 = … = vn.   At the same time the method has to satisfy the constraints mentioned above.  
2.1.1 example 2:
Let’s say there are three players, n = 3: Ana, Ben, and Chris.  Ana is indicated as player 1, i = 1, Ben as player 2, i = 2, and Chris as player 3, i = 3.   Amongst these players there are three homogeneous and divisible goods,  l = 3, to be allocated: a pizza, a cake, and a pie. Labeling the goods in the same way as the players it would be  j = 1,  j = 2,  and  j = 3,  respectively.  Each player  i  gives a valuation on each of the  l goods  j,
	aij
	Pizza
	Cake
	Pie

	Ana
	10
	26
	15

	Ben
	12
	15
	16

	Chris
	8
	23
	18


Suppose at first there is a high budget constraint that does not limit the money compensation, i.e. ci = 1,000,000 for every player.  In this situation each good should be sold to the highest bidder: the pizza goes to Ben (x21  = 1), the cake to Ana (x12  = 1), and the pie to Chris (x33  = 1).  This allocation gives a profit of 12 + 26 + 18 = 56, which should be divided equally and given back to each of the players. Therefore, m = [-26 + (56/3), -12 + (56/3), -18 + (56/3)] = [-22/3, 20/3, 2/3].
v1 = a11 x11 + a12 x12 + a13 x13 + m1 = 26*1 – (22/3) = 56/3

v2 = a21 x21 + a22 x22 + a23 x23 + m2 = 12*1 + (20/3) = 56/3

v3 = a31 x31 + a32 x32 + a33 x33 + m3 = 18*1 + (2/3) = 56/3

From this example player 1, Ana, is the only one that paid money to compensate the allocation.  Thus, what if the budget constraint for this example would be c = [5, 7, 8].  In other words, what if Ana does not have more than 5 units to pay back? 
Maximizing each of the player’s allocation under this new budget constraint would give the following results: Goods 1 and 3 would still go to Ben and Chris (x21 = 1 and x33 = 1), respectively.  But since Ana cannot pay the whole 22/3, then she would only receive 68/75 of the cake (x12 = 68/75).  The rest of the cake would be sold to the next highest bidder who is Chris (x32 = 7/75). This allocation gives a profit of 12 + 26*(68/75) + 18 + 23*(7/75) = 1393/25 = 55.72, which should be divided equally and given back to each of the players. Therefore, m = [-26*(68/75) + (1393/75), -12 + (1393/75), -18 – 23*(7/75) + (56/3)] = [-5, 493/75, -118/75].

v1 = a11 x11 + a12 x12 + a13 x13 + m1 = 10*0 + 26*(68/75) + 15*0 – 5 = 1393/75
v2 = a21 x21 + a22 x22 + a23 x23 + m2 = 12*1 + 15*0 + 16*0 + (493/75) = 1393/75
v3 = a31 x31 + a32 x32 + a33 x33 + m3 = 8*0 + 23*(7/75) + 18*1 – 118/75 = 1393/75
2.2 knaster’s method
Bronislaw Knaster’s method tries to give each player an allocation that is individually rational.  The procedure is similar to the first-price auction, objects are sold to the highest bidder and then the money is distributed back to the players.  The difference here is that the money is not divided equally, but according to the utility function, 
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where  λ  is chosen to be as large as possible.  Note that  λ  is the same for every player.
2.2.1 example 3:

Let’s use the same information as in example 2 with the budget constraint of c = [5, 7, 8].  The allocation following Knaster’s method would be as follows,
For the same reason as in example 2 we cannot give the entire good 2 to Ana, therefore, under this method she receives 214/225 (x12 = 214/225).  Ben receives good 1 (x21 = 1).  Chris receives good 3 and 11/225 of the cake (x33 = 1 and x32 = 11/225).  The profit made, 12 + 26*(214/225) + 18 + 23*(11/225) = 4189/75, should be distributed back according to the player so that it satisfies the utility function for this method.  This gives λ = 614/225.  The allocations are the following,
v1 = a11 x11 + a12 x12 + a13 x13 + m1 = 10*0 + 26*(214/225) + 15*0 – 5 = 
(1/3)*(a11+ a12 + a13) + λ = (1/3)*(51) + (614/225) = 4439/225

v2 = a21 x21 + a22 x22 + a23 x23 + m2 = 12*1 + 15*0 + 16*0 + (1139/225) = 
(1/3)*(a21+ a22 + a23) + λ = (1/3)*(43) + (614/225) = 3839/225

v3 = a31 x31 + a32 x32 + a33 x33 + m3 = 8*0 + 23*(11/225) + 18*1 – 14/225 =
(1/3)*(a31+ a32+ a33) + λ = (1/3)*(49) + (614/225) = 4289/225

2.3 equitable method
An allocation is equitable if each player thinks that the portion he/she receives is worth the same, in terms of his or her valuation, as the portion that the other players receive in terms of those players’s valuation.  That is,
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for each player  i. and  λ  is chosen to be as large as possible.
2.3.1 example 4:
Again using the information from example 2 and the utility function for the equitable method, the maximized allocations are the following,
In this case Ana would receive 3418/3565 (x12 = 3418/3565).  Ben receives good 1 (x21 = 1).  Chris receives good 3 and 147/3565 of the cake (x33 = 1 and x32 = 147/3565).  The profit made, 12 + 26*(3418/3565) + 18 + 23*(147/3565) = 195818/3565, should be distributed back according to the player so that it satisfies the utility function for this method.  This gives λ = 1393/3565.

v1 = a11 x11 + a12 x12 + a13 x13 + m1 = 10*0 + 26*(3418/3565) + 15*0 – 5 = 71043/3565

v2 = a21 x21 + a22 x22 + a23 x23 + m2 = 12*1 + 15*0 + 16*0 + (17119/3565) = 59899/3565

v3 = a31 x31 + a32 x32 + a33 x33 + m3 = 8*0 + 23*(147/3565) + 18*1 + 706/3565 = 68257/3565

For this example the equitable method is not envy-free because player 2 will envy player 3’s allocation. That, is v2 = 59899/3565 ≤ a21 x31+ a22 x32+ a23 x33+ m3 =12*0 +15*(147/3565) + 16*1 + (706/3565) = 59951/3565.
3. Definitions of Properties

3.1 envy-freeness

An allocation is envy-free if every player thinks he or she receives a portion that is at least tied for largest or tied for most valuable and, hence, does not envy any other player. That is,
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for all players i and k.
3.2 efficiency

An allocation is efficient if there is no other allocation that is strictly better for at least one player and as good for all the others.  

Example 2 is both efficient and envy-free for both of the cases, with high and low budget constraint.

3.3 individual rationality

The property of individual rationality states that each player should receive at least 1/n of what they think the estate is worth.
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4. Maple Calculations
4.1 first-price auction

4.1.1 no budget constraint applied
> firstprice := 

proc (n,l,A)

  local constraints,v,x,m,lambda;

  constraints := {

    seq(v[i] = sum(A[i,j]*x[i,j],j=1..l)+m[i], i=1..n), #main utility function
    seq(v[i]=lambda,i=1..n),  #maximizing the utilities

    seq(seq(x[i,j]>=0,j=1..l), i=1..n),  #each fraction the player  i  receives should be nonnegative   

seq(sum(x[i,j],i=1..n)=1, j=1..l),    #every good  j  has to be totally distributed among the players                      seq(seq(v[i]>=sum(x[k,j]*A[i,j], j=1..l)+m[k],k=1..n),i=1..n),    #envy-freeness 

    sum(m[i],i=1..n)=0};      #profit made should be distributed back among the players 

  maximize(lambda, constraints);

end proc:  
> firstprice(n,l,A);
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4.1.2 with budget constraint
> c:=[5,7,8];

firstpricebudget := 

proc(n,l,A,c)

  local constraints,v,x,m,lambda;

  constraints := {

    seq(v[i] = sum(A[i,j]*x[i,j],j=1..l)+m[i], i=1..n),  
    seq(v[i]=lambda,i=1..n),  
    seq(seq(x[i,j]>=0,j=1..l), i=1..n),  
seq(sum(x[i,j],i=1..n)=1, j=1..l),   
seq(seq(v[i]>=sum(x[k,j]*A[i,j], j=1..l)+m[k],k=1..n),i=1..n),  
    sum(m[i],i=1..n)=0,  
    seq(m[i]>=-c[i],i=1..n)};  #budget constraint

maximize(lambda,constraints);

end proc:
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> firstpricebudget(n,l,A,c);
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4.2 Knaster's method

4.2.1 no budget constraint
> knaster := 

proc(n,l,A)

  local constraints,v,x,m,lambda;

  constraints := {

    seq(v[i] = sum(A[i,j]*x[i,j],j=1..l)+m[i], i=1..n), #main utility function
    seq(v[i] = sum(A[i,j],j=1..l)/n + lambda,i=1..n), #maximizing the utilities

    seq(seq(x[i,j]>=0,j=1..l), i=1..n), #each fraction the player i receives should be nonnegative   

    seq(sum(x[i,j],i=1..n)=1, j=1..l), #every good j has to be totally distributed among the players

    seq(seq(v[i]>=sum(x[k,j]*A[i,j], j=1..l)+m[k],k=1..n),i=1..n), #envy-freeness   

    sum(m[i],i=1..n)=0};  #profit made should be distributed back among the players   

  maximize(lambda, constraints);

end proc:            
> knaster(n,l,A);
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4.2.2 with budget constraint
> knasterbudget := 

proc(n,l,A,c)

  local constraints,v,x,m,lambda;

  constraints := {

    seq(v[i] = sum(A[i,j]*x[i,j],j=1..l)+m[i], i=1..n), 

    seq(v[i] = sum(A[i,j],j=1..l)/n + lambda,i=1..n),

    seq(seq(x[i,j]>=0,j=1..l), i=1..n),    

    seq(sum(x[i,j],i=1..n)=1, j=1..l),

    seq(seq(v[i]>=sum(x[k,j]*A[i,j], j=1..l)+m[k],k=1..n),i=1..n),      

    sum(m[i],i=1..n)=0,

    seq(m[i]>=-c[i],i=1..n)};  #budget constraint   

  maximize(lambda, constraints);

end proc:            
> c:=[5,7,8];

knasterbudget(n,l,A,c);
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4.3 equitable
4.3.1 no budget constraint
> equitable := 

proc(n,l,A)

  local constraints,v,x,m,lambda;

  constraints := {

    seq(v[i] = sum(A[i,j]*x[i,j],j=1..l)+m[i], i=1..n),  #main utility function
    seq(v[i]/sum(A[i,j],j=1..l)=lambda,i=1..n),  #maximizing the utilities & equitable   

    seq(seq(x[i,j]>=0,j=1..l), i=1..n), #each fraction the player i receives should be nonnegative

    seq(seq(v[i]>=sum(x[k,j]*A[i,j], j=1..l)+m[k],k=1..n),i=1..n),  #envy-freeness  

    seq(sum(x[i,j],i=1..n)=1, j=1..l), #every good j has to be totally distributed among the players

    sum(m[i],i=1..n)=0};  #profit made should be distributed back among the players  

  maximize(lambda, constraints);

end proc:            
> equitable(n,l,A);
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4.3.2 with budget constraint
> equitablebudget := 

proc(n,l,A,c)

  local constraints,v,x,m,lambda;

  constraints := {

    seq(v[i] = sum(A[i,j]*x[i,j],j=1..l)+m[i], i=1..n), 

    seq(v[i]/sum(A[i,j],j=1..l)=lambda,i=1..n),

    seq(seq(x[i,j]>=0,j=1..l), i=1..n),    
    seq(sum(x[i,j],i=1..n)=1, j=1..l), 
    #seq(seq(v[i]>=sum(x[k,j]*A[i,j], j=1..l)+m[k],k=1..n),i=1..n),  this example can’t have both 
    efficiency and envy-freeness, therefore, omitted to give efficiency   

    sum(m[i],i=1..n)=0,

    seq(m[i]>=-c[i],i=1..n)};  #budget constraint
  maximize(lambda, constraints);

end proc:            
> c:=[5,7,8];

equitablebudget(n,l,A,c);
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 5. Conclusion
There are plenty of allocation methods in fair division, but none account for the idea of a budget constraint.  This analysis shows that it is possible to achieve envy-free and efficient allocations that have a budget constraint.  The continuation of my research will focus on finding a method that gives an envy-free and efficient allocation, if this exists.
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