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Partition function form games were first introduced in Lucas
and Thrall in 1963 as a generalized form of characteristic function
form games. Both R.B. Myerson and E.M. Bolger have defined values
on partition function form games. In this paper an extension of
the Shapley value 1is sought which will satisfy 1linearity,
efficiency, symmetry and dummy. Different axioms are then
incorporated to place bounds on the various remaining parameters.

The following background information, along with 12 axioms and
7 definitions, is key to the paper.

Background Information:

N={1,2,...,n} is the set of players in a n-person game.
CL = {S | SEN, S#J}is the set of coalitions of N.

PT = set of partitions of N: {s',...,S"} E€PT iff

s' U... Us" =N, Vvj Si#@ vk sknsi=g if k=j.
ECL = set of embedded coalitions: {(S,P) | SEPEPT}.
A game in partition function form is any W € RECL,
W(S;P) is the amount S would receive if partition P formed.
$ (W) is a payoff vector for the game W.
%.(W) is a payoff or allocation to player i on game W.
A game is w-superadditive if
W(S;P)+W(T;P)<W(SUT;P-{S,T}U{SUT}Y(S;P), (T;P) € ECL.
A game is w-coalition monotonic if
W(S;P)<W(T;{Q-T : QEP}U{T}),SCST.
A game is w-partition monotonic if
W(S;P)<W(S;Q) whenever Q is a refinement of P, i.e.,
REQ= 3ISEP such that RES.

(T;Q) > (S;P) if S&STand Q-{T} is a refinement of P-{S}.
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A unanimity game for (S;P) is one in which W(S;P)=1, W(T;Q)=1 if
(T;Q) > (S;P) and all other ECL’s=0.

Axioms and Definitions:

Let S and T be defined as subsets of N, P and Q as partitions
of N, and W and V as games on N. The definitions are given as
conditions which hold (for all games in class G). The reference to
the class G in parentheses has been omitted from each definition.
Definition 1) Suppose m:N-N is any permutation of the set of
players. Then m acts as a permutation on CL and ECL in the
following way:

m(S) = {m(j) | JES}, VSECL, and

(8", {8",....,8%) = (w(8"Y), {W(8Y),...,.2w(8})),

(s!, ¢8',...,8%%) € ECL.

Symmetry: the payoff to a player will not change if the names of
the players are permuted. Thus, Vj €Nand for every game W,
3,(W) = @

xjy (MOw) where 7Ow is the game that results from

relabelling W.

Linearity: & (W)=S.p ceqb(1,5iP) W(S;P). @(awér\o'\/): &EN)T(OE(V)
Efficiency: &,(W) + ... + & (W) = W(N;N).

Definition 2) Player j is a dummy player in game W if W(S;P)=
W(S-{j};Q) for each (S;P) € ECL such that jESand |§|>2, where

Q is a partition resulting from the removal of j to another,
possibly empty, set of P.

Dummy: if player j is a dummy in game W, then ®;(W)=0.

Definition 3) For any PEPTand QEPT, PAQEPTis defined as

PAQ= {SNT | SEP, TEQ, 8AT =},

Definition 4) Given WERf'and SECL, S is a carrier of W iff



W(T;Q) = W(SNT; QA {S,N/S}), V(T;Q) € ECL.

Carrier: VS € ECL, if S is a carrier of W, then

Z,es®, (W) = W(N;N).

Definitions 1,3,4 and the carrier axiom are from Myerson (1977).
Definition 5) The dummy extension of W is the game WY defined on
the player set N U {d} by Wd(S;P) = W(S-{d};{R-{d}:REP}) V ECLS
(S:P).

Dummy Independence: Vd &N, and Vi €N, & (W) = &. (W).

Definition 5 and the dummy independence axiom are from Bolger
(1987).

Aggregate Monotonicity: if W(N;N)>V(N;N) and W(S;P) = V(S;P), then
V(S;P) # (N;N)?ﬂgi(W)ZQi(V) vV iEN.

Group Monotonicity: if W(S;P)2>V(S;P) and W(T;Q) = V(T;Q),

V(T;Q) # (S;P), then &,(W)>%,(V), Vi €s.

Complementary Group Monotonicity: if W(S;P)>V(S;P) and

W(T;Q) = V(T;Q), V(T;Q) #(S;P),then & (W)<d.(V), Vi €&sS.
Definition 6) In a game W, the marginals for player i are the
quantities W(S;P)-W(S-{i};Q), where i € S and Q is a partition
resulting from starting with partition P and moving i from S to
another, possibly empty, set in P.

Strong Monotonicity: if each marginal for player i on game W is
greater than or equal to the corresponding marginal for player i on
game V, then &.(W)2&.(V).

Marginalist: if the corresponding marginals for player i are the
same on two games W and V, then the allocation &, should be the
same for both games, &;(W) = 2,(V).

Strong Marginalist: let i €N. If for each partition Q, where



.
o~

T €Q,i €Tand the summations over all partitions P of N that can
be obtained from Q by moving i from T into another, possibly empty,
set we have Z[W(T;Q)-W(T-{i};P)] = Z[V(T;Q)-V(T-{i};P)], then %, (W)
= 2. (V).

Research:

We will now look at the case N=3 in detail. The basis for a
3 player game can be represented by unanimity games in a matrix in

the following manner:

S;P wow? W oWt oW W oW owe oW oWl
123;123 1 1 1 1 1 1 1 1 1 1
12;12,3 0 1 0 0 1 1 0 1 1 0
133 13,2 0 0 1 0 1 0 1 1 0 1
23;23,1 0 0 0 1 0 1 al 0 1 1
1;1,2,3 o 6 @ @ J. B 9 2 0 o
202 8 0 0 0 0 0 1 0 0 1 0
3:1,2,3 0 0 0 0 0 0] 1 0 0 1
1;23,1 0 0 0 0 0 0 0 1 0 0
2;13,2 0 0 0 0 0 0 0 0 1 0
3;12,3 0 0 0 0 0 0 0 0 0 1
player 1: i/3 1/2 1/2 0 1-2z z z 1 0 0]
player 2: 1/3 1/2 0 1j2 =z l1l=2z 2z 0] 1 0]
player 3: 1/3 0 1/2 1/2 =z z 1-2z O 0] 1

Because this is an upper triangular matrix and the dimension

is equivalent to the number of unanimity games, the games are



1S3

linearly independent. Thus, they form a basis for N=3.

The following explanations are given for the allocations to
players 1, 2 and 3.

W': Each player is given 1/3 because by symmetry each one must
be given an equal amount and by efficiency they must all add up to
1108

W?: Player 3 receives nothing because he is a dummy player.
Players 1 and 2 each receive 1/2 because by symmetry they each
receive the same amount and by efficiency their payoffs must add up
to 1.

W and W': These are the same games as W? with the players
permuted, therefore they should receive the same payoffs.

W By symmetry, players 2 and 3 should receive the same
amount. Thus, if each is given the payoff of z, by efficiency
player 1 should be given the payoff 1-2z.

W® and W': These are the same games as W’ with the players
permuted, therefore they should receive the same payoffs.

w8: Because players 2 and 3 are dummy players, they receive 0.
Thus, by efficiency, player 1 receives the payoff of 1.

W and W': These are the same games as W® with the players
permuted, therefore they should receive the same payoffs. Since
unanimity games form a basis for any arbitrary game, w can be
written w=3._, .KW'. By linearity, &;(W)=3;_,.0k;®(W'). The

following is the set of equations:

w(1l23) = K+, +Ka K, tRo R R ARt K
w(l2;3) = Kk +kstk tkgtkg
w(1l3;2) = kytkotk,+kgtk, o



w(23;1) = K,k tk,tkotk,,

w(l;2,3) = kg+k,
w(2;1,3) = ktk,
w(3;2,3) = k7-+k10
w(l;23) = kg
w(2;13) = ky
w(3;12) = kyp

From the allocations already given,

o, (W)= (1/3)k,+ (1/2)k,+ (1/2)kg+ (1-22)ks+ (2)k+ (2)k,+ kg After
solving for k,, ... ,Kk,, and substituting the answers into the above
equation, the following result is found:

&, (W) = (1/3)[w(123)-w(23;1)]

+(1/6-2z) [W(12;3)-w(2;1,3)]+(2) [w(1l2;3)-w(2;13)]
+(1/6-2) [W(13;2)-w(3;1,2)]+(2) [w(13;2)-w(3;12)]
+(1/3-22) [(w(1;2,3)] + (22)[w(1;23)]

The value of 2z is not defined if only the axioms of
efficiency, linearity, symmetry and dummy are applied. Therefore,
more axioms must be used in order to limit the value of z. Group,
complementary group and strong monotone force
0 <z<1/6. Aggregate monotonicity places no restrictions on z as
the payoff for player 1 in the unanimity game w(123) is always
positive. Neither dummy independence nor marginalism place any
restrictions on z.

The carrier axiom gives a value of z=1/3. A simple proof goes
as follows: Let b=w(123)=w(1;23), a=(12;3)=w(13;2)=w(1;2,3), and
0=w(23;1)=w(2;13)=w(3;12)=w(2;1,3)=w(3;1,2). As seen, player 1 is

the carrier, therefore he should receive the total worth of the



game. Thus, &,(W)=W(N;N) becomes (2z-2/3) (b-a)=0. Assuming that
a#b, z=1/3. It is easily seen that the value gained from the
carrier axiom is not group, complementary group or strong
monontonic.

If we look at the case of w-superadditive and w-coalition
monotonic games, however, the previous result does not occur. W-
superadditivity would imply that w(123)>w(12;3)+w(3;12) and, thus,
b>a. W-coalition monontonicity would imply, however, that
w(1l2;3)2>2w(1;23) and, thus, azb. Therefore, a=b and no restrictions
are placed on z!

Finally, applying strong marginalism causes z=1/12. Given the
game w(123)=w(23;1)=2 and w(13;2)=1, ¢,(W)=1/6. Also, given the
game v(123)=v(23;1)=v(13;2)=v(3;1,2)=2, ¢&,(V)=2z. Thus, by strong
marginalism, &,(W)=%,(V) which forces z=1/12. This value is clearly
group, complementary group and strong group monontonic.

We will now look at N=4 in detail. Because the unanimity
games form a 37 x 37 matrix, only the 7 different cases will be
presented.
case 1: w(1234)=1.

By symmetry each player should receive the same amount and by
efficiency they all receive 1/4.

Case 2: w(1l234)=w(123;4)=1.

Because player 4 is a dummy, he receives 0. By symmetry
players 1, 2, and 3 each receive the same amount and by efficiency
they each receive 1/3.

Case 3: w(1234)=w(123;4)=w(124;3)=w(12;3,4)=1.

By symmetry players 3 and 4 and players 1 and 2 should each



receive the same amount. Therefore, if players 3 and 4 are each

given the payoff a, players 1 and 2 should each receive (1/2-a) by

efficiency.

Case 4: w(1234)=w(123;4)=w(124;3)=w(12;3,4)=w(12;34)=1.

Because players 3 and 4 are both dummy players, they receive
0. By symmetry players 1 énd 2 each receive the same amount and by
efficiency they each receive 1/2.

Case 5: w(1234)=w(123;4)=w(124;3)=w(134;2)=w(12;3,4)=w(13;2,4)
=w(1l4;2,3)=w(1;2,3,4)=1.

By symmetry players 2, 3, and 4 should each receive the same
amount. If they are each given the payoff b, then by efficiency
player 1 should receive (1-3b).

Case 6: wW(1234)=w(123;4)=w(124;3)=w(134;2)=w(12;3,4)=w(13;2,4)
=w(1l4;2,3)=w(14;23)=w(1;2,3,4)=w(1;23,4)=1.

Let player 4 receive the payoff c. By symmetry players 2 and
3 should receive the same amount. Thus, if they are each given the
payoff d, by efficiency player 1 should receive (1-c-2d).

Case 7: w(1234)=w(123;4)=w(124;3)=w(134;2)=w(12;3,4)=w(13;2,4)
=w(14;2,3)=w(12;34)=w(13;24)=w(14;23)=w(1;2,3,4)
=w(1;23,4)=w(1;24,3)=w(1;34,2)=w(1;234)=1.

Because players 2, 3, and 4 are dummy players, they each
receive 0. Therefore, by efficiency player 1 receives the payoff
4

Using the same procedure as was followed in the case N=3
yields the following result for %, (W):

(1/4) [w(1234)]

+ (1/12) [w(123;4) + w(124;3) + w(134;2)]



+

(1/4) [w(234;1)]

(1/12-a) [w(12;3,4) + w(13;2,4) + w(14;2,3)]

(a=1/12) [w(23;1,4) + w(24;1,3) + w(34;1,2)]

(a) [w(12;34) + w(13;24) + w(14;23)]

(a) [w(23;14) + w(24;13) + w(34;12)]

(1/4+3a-3b) [w(1;2,3,4)]

(1/12+a-b) [w(2;1,3,4) + w(3;1,2,4) + w(4;1,2,3)]

(a=3b+c+2d) [w(1;23,4) + w(1;24,3) + w(1;34,2)]

(a-b+d) ([w(2;13,4) + w(2;14,3) + w(3;12,4) + w(3;14,2)
+ w(4;12,3) + w(4;13;2)]

(atb-c) [w(2;34,1) + w(3;24,1) + w(4;23,1)]

(6b-3c-6d) [w(1;234)]

(2b-c-2d) [w(2;134) + w(3;124) + w(4;123)].

If player 1 is a dummy, then one could set up the following

game:

w(4;123)=w(4;1,23)=w(14;23)=1. Player 1 should receive a

payoff of 0 which results in the relationship d=(b/2). Replacing

d with (b/2) and writing &,(W) as the product of its marginals

yields the following result:

&, (W)= (1/4) [w(1234) - w(234;1)]

+

+

(1/12-a) [w(1l23;4) - w(23;1,4)]

(a) [w(1l23;4) - w(23;14)]

(1/12-a) [w(124;3) - w(24;1,3)]

(a) [w(124;3) - w(24;13)]

(1/12-a) [w(134;2) - w(34;1,2)]

(a) [w(134;2) - w(34;12)]
(1/12+a-b) [w(12;3,4) - w(2;1,3,4)]

(-a+b/2) [w(12;3,4) - w(2;13,4)]



+ (-a+b/2) [w(12;3,4) - w(2;14,3)]

+ (1/12+a-b) [w(13;2,4) - w(3;1,2,4)]

+ (-a+b/2) [w(13;2,4) - w(3;12,4)]

+ (-at+b/2) [w(1l3;2,4) - w(3;14,2)]

+ (1/12+a-b) [w(14;2,3) - w(4;1,2,3))

+ (-a+b/2) [w(14;2,3) - w(4;12,3)]

+ (-a+b/2) [w(14;2,3) - w(4;13(2)]

+ (a+b-c) [w(12;34) - w(2;34,1)3

+ (=b+c) [w(12;34) - w(2;134)]

+ (a+b-c) [w(13;24) - w(3;24,1)]

+ (=b+c) [w(13;24) - w(3;124)]

+ (atb-c) [w(14;23) - w(4;23,1)]

+ (=bte) [w(ld;23) - wid;123)]

+ (1/4+3a-3b) [w(1;2,3,4)]

+ (-a+2b-c) [w(1;23,4) + w(1;24,3) + w(1;34,2)]

+ (-3b+3c) [w(1;234)].

Group, complementary group and strong monotonicity place the
following restrictions on the remaining three parameters:

0 < a

IA

1/12 ; 2a < b < a+1/12 ;

b

IA

c < atb and b < ¢ < 2b-a.
Applying the dummy independence axiom yields the equation
¢, (W) = (1/3)[w(123)] + (1/6)[w(12;3)+w(13;2)] - (1/3)([w(23;1)]
+ (1/3+b-2c) [w(1;2,3)] - (1/6+b/2-c)[w(2;1,3)+w(3;1,2)]
- (b-2c)[w(1;23)] + (b/2-c)[wW(2;13)+w(3;12)].
Thus, z=(-b/2+c).
The carrier axiom gives the values a=1/4, b=1/6 and c=5/12.

The game w(1234)=w(12;34)=1 has players 1 and 2 as carrier.
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Therefore, 0=%;(W)=(1/4-a) which implies that a=1/4. 1If player 1
is a carrier, then the following two games are possible:
w(l2;3,4)=w(1;2,3,4)=w(13;2,4)=w(14;2,3)=1 and
w(1l23;4)=w(1;23,4)=w(14;23)=1. Because player 1 is the carrier, he
receives the full worth of the game. Thus, the first game yields
the equation (1/2-3b)=0 and the second (1/12+2b-c)=0. Therefore,
b=1/6 and c=5/12.

Although this approach to partition function form games yields
payoffs for all the players in the game, a few difficulties are
seen. The two major weaknesses are the extremely large matrices
introduced by games with many players and the fact that some
variables drop out, as in the four player game when d=b/2. Thus,
a new approach will now be considered in which the linearity and
dummy axioms are used to imply marginalism. Then the symmetry and
efficiency axioms are added to find a recursion relationship for
the coefficients. This recursive formula still has parameters, but
no variables are eliminated and the large matrices are no longer
needed. For clarity, P is no longer all the partitions in the
game, but P is now the partitions of N-S.

Linearity states that ¢, (W)=3 b(i,S;P)W(S;P). Using

(S;P)E ECL

this equation, the payoff to player one in the three player game

would be written in the following manner:

®, (W)= b(1,123;J)W(123;)+b(1,23;1)W(23;1)+
b(1,12;3)W(12;3)+b(1,2;1,3)W(2;1,3)+b(1,2;13)W(2;13)+
b(1,13;2)W(13;2)+b(1,3;1,2)W(3;1,2)+b(1,3;12)W(3;12)+
b(1,1;2,3)W(1;2,3)+b(1,1;23)W(1;23).

Combining linearity with the dummy axiom implies marginalism.



The proof goes as follows:
(Linearity) Qi(W)=E$F)ERLb(i,S;P)W(S;P)
=26W)EH1H[b(i’S;P)W(S;P)+
zgepucg)b(ils-{i};P[ilR])W(S-{i};P[iIR])
where ECL(i) 1is all ECL’s (S;P) s.t. 1i€S and
P[i,R] is a partition identical to P except that i
is added to R € PU{J}.
=2(5;P)EECL”[ [b(i,S,'P)+ZR€PU(z}b(i,S—{i};P[i,R])]W(S;P)+
ERGPU(z;b(i,S-{i};P[i,R])[W(S;P)—W(S-{i};P[i,R])]]
Suppose W(N;N)=W(N-{i};{i})=1, then the payoff to player i as
written in the form of the above formula would appear as:
%, (W)= [b(i,N;J)+b(i,N=-{i};{i}) JW(N;N)-
b(i,N-{i},{i}) W(N;N)-W(N-{i}, {i})
= [b(i,N,d)+b(i,N-{i},{i})]
Since player i is a dummy player, %, (W)=0, thus
[b(i,N, ) + b(i,N-{i},{i}) ]=0.
When unanimity games are viewed, they yield the same result, i.e.
& (W) =Sg.pyererciy [P(1/SiP)+ThcpyeP(1,8-{i},P[i,R]) ]=Gince i is a
dummy player. Thus, if we define -b(i,S-{i};P[i,R]) =c(i,S;P;R),
where R is the coalition in P to which i is added, the linearity
and dummy axioms imply the following formula:
B, (W) =Z .0 ceciciySrepuceyS (1, 8iPiR) [W(S;P) -W(S-{i};P[i,R])].
Thus, linearity and the dummy axiom imply marginalism. Also, due
to the manner in which the games are set up they are
w-superadditive, w-coalition and w-partition monotonic.
According to this formula the payoff to player one in a three

player game would be written in the following manner:



®, (W)= c(1,123;J;)[W(123;T) -W(23;1)]
+ ¢c(1,12;3; ) [W(12;3) -W(2;1,3)]
+ c(1,12;3;3) [W(12;3) -W(2;13)]
+ c(1,13;2;9J) [W(13;2) -W(3;1,2)]
+ c(1,13;2;2) [W(13;2) -W(3;12)]
+ c(1,1;2,3;0) W(1;2,3) + c(1,1,23,0)W(1;23).

Applying symmetry further simplifies this formula. Let
W(N;JJ)=1and all other ECL’s=0. Thus, the payoff to player i is
c(i,N;J;J). Now if the players are permuted, then the payoff to
m(1i) is c(n(i),n(N);D;J). By symmetry, c(i,N;D;9) =
c(m(i),m(N);J;J). If the general game is set up where all ECL'’s
which appear before W(S;P) when é.(W) is written as the sum of its
marginal worths equal 1, W(S;P)=1 and all other worths = 0,
including W(S-{i},P[i,R]), then the only place where player i is
not a dummy is in W(S;P). Thus, the payoff to player i is
c(i,S;P;R). Again, if the players are permuted, the payoff to m(i)
is c(m(i),m(S);m(P);m(R)). By symmetry, c(i,8;P;R) =
c(m(i),m(S);mn(P);m(R)). Thus, the coefficient is not dependent on
i. It is only dependent on the size of S, denoted by |S|, the
sizes of the elements of P, denoted by ||P||, and the size of R,

denoted by |R

. Hence, a new formula is found which can be stated:
& (W) =2 (s;pyeecrcirBrerucend (IS | [P] i {R]) [W(S;P) -
W(S-{i};P[i,R])]
where |R|=0 when S=i.
Writing the payoff for player one in a three player game

according to this formula would appear as:

®,(W) = d(3;0;0) [(W(123;9) - W(23;1)]



+ d(2;1;0) [W(12;3) - W(2;1,3)]
+ d(2;1;1) [W(12;3) - W(2;13)]
+ d(2;1;0) [W(13;2) - W(3;1,2))
+ d(2;1;1) [W(13;2) - W(3;12)]

+ d(1;1,1;0) W(1;2,3) + d(1;2;0) W(1;23).

Finally, a recursion relation among the coefficients is found
when efficiency is added. Let W(N;J)=1and all other W(S;P)=0.
All the players in the grand coalition look the same by symmetry
and by efficiency their payoffs must add to 1, therefore %, (W) =
(1/n). According to efficiency, the sum of coefficients of W(S;P)
over all the players for coalitions other than grand one must be
zero. The coefficient of player i for W(N-{i}, {i}) however is -
(1/n), not zero. Thus the sum of the coefficients of all jENs.t.
j#imust equal (1/n). This leads to the equation:

Enm1d(n-1;1;r) = (1/n),

where d(n-1;1;1) is the coefficient of [W(N-{i};{i}) -
W(N-{i,j};{i,J})] and d(n-1;1;0) is the coefficient of [W(N-
{i},{1i}) - W(N-{i,j};{i},{j})] for player j, by the previous
formulas given by marginalism and symmetry.

Looking at the more general case yields a similar type of equation.
As stated earlier, the sum of coefficients

for all W(S;P), other than the grand coalition, over all the
players must be zero. This is easily seen when only linearity is
applied. By linearity, & (W) = 2 (s:pyECL b(i,S;P)W(S;P). Thus, by
efficiency, Z;,,b(i,S;P)=1if S=N and 0 otherwise. When the payoff
to player i is written as the sum of its marginal worths, the

coefficients for the different players jES, given a particular P,



appear in various places in the payoff to player i. When the
general formula given by symmetry and marginalism is viewed, the

coefficient on any W(S;P) for player i is =

REPU(I)

not zero. By efficiency, the sum over all players jENs.t. JET

where |T| = | S| and | IN-T] | = | |P]| must  equal
Zrepuced
15| Zhepucand(|8] i
z i [R-1])
ot Ty Repucz)‘a

wheaeze d(|S|,||P||,0) ZREP[(I//|S|)d(|S+1|,||P {R} U {R-
a(|slilIp||7[R])].

There are |S| ways to pick a player jES, therefore it is multiplied

2=

by |§|. The same applies to the coefficient |R|. The size of a
coalition and particular partitions will have occurred before when
by writing the payoff to player i by its marginal worths, {i} was
taken out of a coalition T, where |T|=|S+l1| and TEECL(i), and
placed in a coalition Q, where |Q|=|R-1|. This leads to the
relationships between |S| and |S+1|, ||P|| and | |P-{R}U{R-1}]||,and
|R| and |R-1].
As stated earlier, d(n,0,0)=(1/n) by efficiency and symmetry.
Thus, a recursive relationship is found whereby the coefficients
are determined by previous ones and the number of parameters
introduced is all (x,y € ||P|| ) - 1 s.t. x#y.

According to the final formula, the payoff to player 1 in a
three player game is:
Equation: %, (W)=
d(3;0;0)=(1/3) = (1/3)W(123,9)+

2[d(271;0)+d(2;1;1)]=d(3;0;0) = (1/6 - u,)[W(12;3)-W(2;1,3)]+



By [W(12;3)-W(2;13) ]+
(1/6 = u) [W(13;2)-W(3;1,2)]+
B, [W(13;2)-W(3;12)]+
d(1;1,1;0)=2d(2;1;0) = (1/3 - 2u,) W(1;2,3)+
d(1;2;0)=2d(2;1;1) = 2, W(1;23).
Using the recursion relation, the payoff to player 1 in a four
player game would appear as follows:
Equation: %, (W)=
d(4;0;0)=(1/4) = (1/4)W(1234;9)+
3[d(3;1;0)+d(371;1)]=d(4;0;0) = (1/12-p,)[W(123;4)-W(23;1,4)]+
B, [W(123;4)-W(23;14)]+
(1/12-p,) [W(124;3)-W(24;1,3) ]+
Wy, [W(124;3)-W(24;13) ]+
(1/12-p,) [W(134;2)-W(34;1,2) ]+
p, [W(134;2)-W(34;12) ]+
2[d(2;2;2)+d(2;2;0) ]1=2d(3;1;1) = (Bq—u,) [W(12;34)-W(2;34,1) ]+
b, [W(12;34)-W(2;134)]+
(Bq=k,) [W(13724)-W(3;24,1) ]+
L, [W(13;24)-W(3;124)]+
(Mq=u;) [W(14;23)-W(4;23,1) ]+
B, [W(14;23)-W(4;123)]+
2[2d(2;1,1;1)+d(2;1,1;0)]=2d(3;1;0) =
(1/12-p,=2p;) [W(12;3,4)-W(2;1,3,4) ]+
By [W(12;3,4)-W(2;13,4) ]+
By [W(12;3,4)-W(2;14,3) ]+
(1/12-p,=2p;) [W(13;2,4)-W(3;1,2,4) ]+

By [W(13;2,4)-W(3;12,4) ]+



Ky [W(13;2,4)-W(3;14,2) ]+
(1/12-p,~2p;) [W(14;2,3)-W(4;1,2,3) ]+
By [W(14;2,3)-W(4;12,3) ]+
g [W(14;2,3)-W(4;13,2) ]+
d(1;3;0)=3d(2;2;2) = 3, [W(1;234)]+
d(1;2,1;0)=4(2;2;0)+24(2;1,1;1) = (M=, +2u5) [W(1723,4)+W(1;24,3)
+W(1;34,2) 1+
d(1;1,1,1;0)=3d(2;1,1;0) = (1/4-3p,-643) [W(1;2,3,4)].

Conclusion:

The last method was briefly introduced without any other
axioms, such as dummy independence, carrier, and strong
marginalism, being applied. It would be very desirable to have a
simple result when any of these axioms were applied. Further
research could be done in this area by applying these axioms or
finding a simpler formula that did not depend on recursion.

Not only are there specific questions unanswered in respect to
this formula, but there are also many general questions in the
field of partition function form games. It would be simpler if an
axiom was found which would yield a payoff vector without
parameters. This would be ideal in the sense of a shapley
extension on partition function form games, the major theme of the

paper.
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