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Abstract

This paper sets forth necessary and sufficient conditions for the existence of a convex extension for a class of partially defined cooperative games.  A formula is given as a test for convexity.
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1. Introduction and Definition of Terms
The purpose of this paper is to set forth a formula that is a necessary and sufficient condition for a partially defined cooperative game to have a convex extension.  Convexity is a desirable property for a game to have because many solution concepts have nice properties for convex games.  For instance, it is known that the core is nonempty for convex games.  Furthermore, the (extended) Shapley value is population monotonic for convex games.[6]  Many other examples are given by van Velzen, Hamers and Norde in [9].


A cooperative game is defined as a pair (N, v) where N = {1,2,3,…} is the set of players and v is a real-valued function on the subsets of N called the value function, which satisfies v(ø) = 0.  The value function is usually interpreted economically; v(S) is the amount group S can share if they cooperate.  The cardinality of set N, |N|, will commonly be denoted as n.  A partially defined game is one in which v is defined on some subsets of N, but not all.  In this paper, the term partially-defined game can be understood to refer to the special class of partially-defined games for which v is defined only on subsets of sizes n, n-1, and 1, and v(i) = 0 for all i in N.  


Example 1.  Five friends, Alice, Bob, Carol, Dan and Eddie, have decided to share a lemonade stand.  None of the five can make any money on their own.  If all five work together, they can make $60.  However, if only Alice, Bob, Carol and Dan work together they can make $35.  Similarly, Bob, Carol, Dan and Eddie can make $35, Alice, Carol, Dan and Eddie can make $40, Alice, Bob, Dan and Eddie can make $55, and Alice, Bob, Carol and Eddie can make $50.  It is unknown how much any pair or triple could make working together.  This situation could be modeled with a partially defined game as follows.  The set N = {1,2,3,4,5} where players 1, 2, 3, 4, and 5 can be considered Alice, Bob, Carol, Dan and Eddie respectively.  Then the value function will be v(1) = v(2) = v(3) = v(4) = v(5) = 0, v(12345) = 60, v(1234) = 35, v(1235) = 50, v(1245) = 55, v(1345) = 40 and v(2345) = 35, where v(S) represents the amount in dollars that group S can earn.


An extension of a partially defined game (N, v) is a fully defined cooperative game (N, 
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) where 
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 ≡ v wherever v is defined.  For example 1, an extension would be any cooperative game using the given value function for groups of one, four, or five members and any values for groups with two or three members.


A cooperative game is said to be convex if 

 
     v(S) + v(T) ≤ v(S
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2. Necessary and Sufficient Conditions for Convexity
The formula for convexity given in equation (1) unfortunately says nothing about convexity for partially defined games.  It could, however, be applied to any extension of a partially defined game.  The question, then, is how to identify which partially defined games will have convex extensions, and for which partially defined games that is impossible.  The following theorem gives necessary and sufficient conditions for the existence of a convex extension.


Theorem 1.  A partially defined game (N, v) where v is defined for all S
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N such that |S| = 1,n-1, n, v(i) = 0 for all i in N, and 0 ≤ v(N-{i}) ≤ v(N) for all i in N, has a convex extension if and only if 
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Proof.  See appendix A.

This formula provides a quick method to determine whether or not a convex extension exists for any given partially defined game.

3. Application
Let us apply this formula to example 1.  In this case, there are five inequalities that must hold true


      v(1234) + v(1235) + v(1245) + v(1345) ≤ 3v(12345)

35 + 50 + 55 + 40 ≤ 3(60)


      v(1234) + v(1235) + v(1245) + v(2345) ≤ 3v(12345)

35 + 50 + 55 + 35 ≤ 3(60)


      v(1234) + v(1235) + v(1345) + v(2345) ≤ 3v(12345)

35 + 50 + 40 + 35 ≤ 3(60)


      v(1234) + v(1245) + v(1345) + v(2345) ≤ 3v(12345)

35 + 55 + 40 + 35 ≤ 3(60)


      v(1235) + v(1245) + v(1345) + v(2345) ≤ 3v(12345)

50 + 55 + 40 + 35 ≤ 3(60)

Since all five of these inequalities are true, we know that a convex extension must exist for this game.  For instance, the extension where 
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(234) = 15 can be verified to be convex.


Example 2.  After a week of selling lemonade Alice, Bob, Carol, Dan and Eddie reevaluate their earnings.  They discover that all of them working together could only make $55, but that Alice, Carol, Dan and Eddie were actually able to make $50.  This new situation can be modeled in the same way as in example 1 with the new value function v(1) = v(2) = v(3) = v(4) = v(5) = 0, v(12345) = 55, v(1234) = 35, v(1235) = 50, v(1245) = 55, v(1345) = 50 and v(2345) = 35.  If we test this new partially defined game in equation (2), we discover that


    v(1234) + v(1235) + v(1245) + v(1345) ≤ 3v(12345)

35 + 50 + 55 + 50 ≤ 3(55)

is not true.  We know, then, that it is not possible for this game to have a convex extension.
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Appendix A

Proof of Theorem 1

Proof:  ←  Let the game (N, v) have a convex extension (N, 
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).  Note that if w
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(T) + v(N – {w}) ≤ 
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(T – {w}) + v(N).
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Using induction, it can be shown that 
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v(N – {j}) ≤ (|T| - 1)v(N), 
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T, for all T subset of N such that 2 ≤ |T| ≤ n-1.

Base Case:  |T| = 2  Let T = {i, w}.  Then, T –{w} has only one element.  From the definition of our game, 
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(T – {w}) = v(i) = 0.  From equation (3), 
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(T) + v(N – {w}) ≤ v(N).  This is equivalent to 
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Induction:  Suppose Tk+1 is a subset of N such that 2 ≤ |Tk+1| = k+1.  Let i and g be any elements of Tk+1.  Define Tk ≡ Tk+1 – {g}.  By our induction hypothesis, 
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v(N – {j}) ≤ (|Tk| - 1)v(N), 
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Tk.  Rearranging, this is
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From the definition of convexity, 
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This can be rewritten as
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(Tk+1) + v(N – {g}) – 
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(Tk) ≤ v(N).

Substituting in for -
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(Tk), we have
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This can be rewritten as
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Finally, this is
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This completes the induction.


Consider the case when T = N – {x}, x 
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 N.  Substituting in for T in our above result, we have
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Simplifying, this becomes
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→  Let (N, v) be a game such that 
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We will show that 
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 is convex.  Let S and T be subsets of N; without loss of generality let |S| ≤ |T|.  


If S is a subset of T, then 
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(S), so convexity is assured, since we have 
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Henceforth, we assume that S 
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 T.


Otherwise, we have three cases, where |S| = 1, where |T| = n –1, and where |S| ≠ n, n-1, 1 and |T| ≠ n, n-1, 1.

Case 1  |S| = 1


Let S = {w}.  In this case, we know that 
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{w}).  From the definition of v, we know that min{v(N-{i}): i
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Substituting into (+), this is 
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Case 2  |T| = n-1


Let T = N-{i}.  If |S| also is n-1, then let S = N-{j}.  In this case, 
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Using S = N – {i,j} in (+), the above simplifies to v(N-{j}) + v(N-{i}) ≤ 
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If, however, |S| ≠ n, n-1, 1, then S
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From the above result, this is 
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Therefore, convexity holds whenever |T| = n-1.

Case 3  |S| ≠ n, n-1, 1 and |T| ≠ n, n-1, 1

Using (+),
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From the above equalities, this is simply
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Therefore, convexity holds when |S| ≠ n, n-1, 1 and |T| ≠ n, n-1, 1.  Since we have shown that for every case convexity holds, the extension 
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 is convex.
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