
The Machiavelli Index

1. Introduction

“Upon this, one has to remark that men ought either to be well treated or crushed, because they can 

avenge themselves of lighter injuries, of more serious ones they cannot; therefore the injury that is to be 

done to a man ought to be of such a kind that one does not stand in fear of revenge.”

-Niccolo Machiavelli, The Prince

The Machiavelli power index is a way of measuring relative a priori voting power in a decision-making 

assembly. The key idea behind this index is that groups of voters can sometimes increase their power 

by forming a bloc: an agreement to decide amongst themselves how all will vote in the full assembly. 

Voters seeking to maximize power will seek to form blocs, and we will measure an individual’s voting 

power by an average of the power obtainable from blocs that are likely to form. 

The Machiavelli power index has a different viewpoint from power indices previously proposed in the 

literature. The Shapley-Shubik (1954) power index imagines voters joining a coalition one by one rather 

than together forming a bloc. The voter who changes the coalition from losing to winning (said to be 

pivotal) has all of the voting power for a particular order of players. The Shapley-Shubik voting power 

for a particular player is the number of times that player is pivotal divided by all possible orders of the 

players.

Three power indices in the literature can be interpreted as assuming that certain blocs can form, pivotal 

voters in those blocs (those whose unilateral defection from the bloc changes it from winning to losing) 

share all power equally, and the power index is calculated by averaging the power obtained in each 

bloc that can form. The Johnston (1978) power index assumes that each winning coalition is equally 

likely to form.  The Deegan-Packel (1978) power index assumes that each minimal winning coalition is 

equally likely to form.  The Banzhaf (1965) power index assumes that the probability that a winning 

coalition will form is proportional to the number of pivotal voters in the winning coalition.  The Machi-

avelli power index differs both (1) in what blocs are assumed to form, and (2) in that the power of a 

voter in a bloc depends on its structure and is obtained recursively rather than assumed to be equally 

shared with others.

In section 2, we review the definitions of power indices previously reported in the literature.  In section 

3, we provide an intuitive and formal definition of the Machiavelli power index.  In section 4, we deter-

mine the Machiavelli power index for all proper simple games with four or fewer voters.  In section 5, we 

illustrate some difficulties with our definition of the Machiavelli power index.  In section 6, we offer ideas 

for future research.

A Motivating Real World Example

The United Nations Security Council is an example of a real world application of power indices. The 

United Nations Security Council was formed shortly after World War II to prevent wars of that size from 

ever happening again.There are five permanent members on the Council: The United States, Great 

Britain, Russia, China, and France. Ten non-permanent members have two year terms on the Council. 

To pass some bill, consent is required from all five permanent members and four of the ten non-perma-

nent members.
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General Formal Definitions

A proper simple game is a set of players, N, and a set of winning coalitions, W, that satisfies:

1. Winning coalitions are sets of players (if S œ W , then S Œ N),

2. Unanimity wins (N œ W ),

3. No player is detrimental (if A Œ B and A œ W , then B œ W ), and

4. Only one coalition can be winning at any particular time (if A œ W , then the complement N\A – W ). 

A minimal winning coalition is a set of players, M such that:

1. The coalition is winning, (M œ W),

2. If any player is removed, the coalition is no longer winning, (for every player j œ M, M - { j } – W).

MA is the set of all M, (all M œ MA).

Then, a proper simple game (N, W) can instead be written as W
min

= 8M1, M2, ..., Mn<+
 where Mk is 

some group of players k that is a minimal winning coalition.

A dummy is a player i, where:

1. i is in no minimal winning coalitions, (i – M for all M œ W).

A unanimity game is a proper simple game where:

1. All players’ approval is required to pass some bill, (for every player j œ N, N - { j } – W).

A weighted voting game is a proper simple game (N, W) such that

1. W = [q; w1, w2,..., wn], where q is the number of votes needed to win, and wi is the number of votes 

possessed by some player i.

2. Power Indices in the Literature

In this section, we will use the example W
min

= 8AB, AC, BCD<+
. This could also be written as [5; 3, 2, 

2, 1] to illustrate four power indices in the literature.

The Shapley Shubik Index

The Shapley Shubik Index, or the S-S index, calculates power by assuming that voters in some assem-

bly vote in order. The nth voter who changes a losing coalition to a winning coalition is termed pivotal. 

The S-S index assumes that all orderings of voters are equally likely. A players’ power is the number of 

times that that player is pivotal divided by the total number of permutations.

More formally, the S-S index is defined as follows. For some proper simple game (N, W), let p be some 

permutation of the group of voters N={1, 2, 3, ..., n}. Then {p(1), p(2),p(3), ..., p(n)} is some reordering of 

N. It follows that there must be a unique k such that p(k) is pivotal in the coalition {p(1), p(2),p(3), ..., 

p(k)}. With k, the coalition is winning, without k, the coalition is losing. We call this unique p(k) pivotal for 

this particular permutation, p(p). Then the S-S index for some voter i in the proper simple game W, 

denoted ri(W), is equal to the number of times i is pivotal in all permutations, divided by the total num-

ber of permutations. In other words,

ri(W) = 
† 8p:p HpL=i< §

n!
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Example: W
min

= 8AB, AC, BCD<+

In a four player voting game, there are 24 possible orders that the voters could vote in, 4!=24. All 24 

orders are listed below, with the pivotal player bolded.

ABCD

ABDC

ACBD

ACDB

ADBC

ADCB

BACD

BADC

BCAD

BCDA

BDAC

BDCA

CABD

CADB

CBAD

CBDA

CDAB

CDBA

DABC

DACB

DBAC

DBCA

DCAB

DCBA

A is pivotal 10 times, so rA(AB, AC, BCDL+
= 

10

24
 = 41.67%

B is pivotal 6 times, so rB(AB, AC, BCDL+
= 

6

24
 = 25%

C is pivotal 6 times, so rC(AB, AC, BCDL+
= 

6

24
 = 25%

D is pivotal 2 times, so rD(AB, AC, BCDL+
= 

2

24
 = 8.33%

The Relative Banzhaf Index

Unlike the S-S index, the relative Banzhaf index, or Bz index, is not concerned with the order in which 

players may vote. First the Bz index calculates the number of times that a given player is pivotal in all 

combinations of voters. Then, that is divided by the sum of the number of times pivotal for all players.

Formally, we first consider some proper simple game (N, W). The Bz score, hi for some player i is the 

number of times that i is pivotal.

hi (N, W) = † {S Œ N: S œ W and S - { i } – W } §
The relative Bz index for some voter i in the proper simple game (N, W) is 

bi (N, W) = 
hiHN, W L

⁄j=1
n

h jHN, W L
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Example: W
min

= 8AB, AC, BCD<+

Below, all possible combinations of {A, B, C, D} are listed. In each coalition, players are bolded, who, if 

taken away would change the coalition from winning to losing. 

A

B

C

D

AB

AC

AD

BC

BD

CD

ABC

ABD

ACD

BCD

ABCD

A is pivotal 5 times, so bA (AB, AC, BCDL+
 = 

5

12
 = 41.67%

B is pivotal 3 times, so bB (AB, AC, BCDL+
 = 

3

12
 = 25%

C is pivotal 3 times, so bC (AB, AC, BCDL+
 = 

3

12
 = 25%

D is pivotal 1 times, so bD (AB, AC, BCDL+
 = 

1

12
 = 8.33%

Note that the S-S index and the Bz index will not always yield the same answer, even though they do in 

this particular example.

The Deegan and Packel Index

The Deegan and Packel Index, or the D-P index, assumes that only minimal winning coalitions will 

form, that all minimal winning coalitions have an equal probability of forming, and that the members of a 

minimal winning coalition benefit equally from winning. Each player gets 
1

n
 points added to its score for 

every minimal winning coalition, where n is the number of players in that minimal winning coalition. 

Then, that score is divided by the total number of minimal winning coalitions.

Formally, let MAi
be the set of minimal winning coalitions that some player i belongs to. So MAi

 = {S œ

MA: i œ S}. In addition, let the number of players in some minimal winning coalition L be written as †ML§. 
The D-P index di (N, W) for voter i in some proper simple game (N, W) is:

di (N, W) = 
1

MA

×⁄L=1

†MA§ 1

†ML§ .
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Example: W
min

= 8AB, AC, BCD<+

There are three minimal winning coalitions in this game. They are listed below.

AB

AC

BCD

A gets 
1

2
in both the AB and AC minimal winning coalitions, for a total sum of 1. This is then divided by 

three, the number of minimal winning coalitions. dA (AB, AC, BCDL+
 = 

1

3
×⁄L=1

3 1

†ML§  = 
1

3
 = 33.33%.

B gets 
1

2
 in the AB coalition and 

1

3
 in the BCD coalition for a total of 

5

6
. This is then divided by three, the 

number of minimal winning coalitions. dB(AB, AC, BCDL+
 = 

1

3
×⁄L=1

3 1

†ML§  = 
5

18
 = 27.78%.

C gets 
1

2
 in the AC coalition and 

1

3
 in the BCD coalition for a total of 

5

6
. This is then divided by three, the 

number of minimal winning coalitions. dC(AB, AC, BCDL+
= 

1

3
×⁄L=1

3 1

†ML§  = 
5

18
 = 27.78%.

C gets 
1

3
 in the BCD coalition for a total of 

1

3
. This is then divided by three, the number of minimal 

winning coalitions. dD (AB, AC, BCDL+
 = 

1

3
×⁄L=1

3 1

†ML§  = 
1

9
 = 11.11%.

The Johnston Index

The Johnston Index, or the Jn index, borrows ideas from both the Bz index and the D-P index. The only 

difference between the Jn index and the Bz index is that the Jn index adds 
1

n
 to a given players score, 

where n is the number of pivotal players in that winning coalition. 

Let p(S) be the number of pivotal players in some coalition S. Let Sq be some coalition q. The Jn score 

for voter i is zi(N, W) = ⁄q=1

†q§ : 1

pHSL : S œ WandS - 8i < – W >. The Jn index gi(N, W L =
ziHN, W L

⁄j=1
n

z jHN, W L .

Example: W
min

= 8AB, AC, BCD<+

Here are all possible coalitions. Pivotal players are bolded.

A

B

C

D

AB

AC

AD

BC

BD

CD

ABC

ABD

ACD

BCD

ABCD

A gets 1 in the ABC coalition, 
1

2
in the AB, AC, ABD, and ACD coalitions, for a total sum of 3. This is 

then divided by six, the number of coalitions with pivotal players. gA(AB, AC, BCDL+
=

3

6
 = 

1

2
 = 50%.

B gets 
1

2
in the AB and ABD coalitions and 

1

3
 in the BCD coalitions for a total sum of 

4

3
. This is then 

divided by six, the number of coalitions with pivotal players. gB(AB, AC, BCDL+
=

4ê3
6

 = 
4

18
= 

2

9
 = 22.22%.

C gets 
1

2
in the AC and ACD coalitions and 

1

3
 in the BCD coalitions for a total sum of 

4

3
. This is then 

divided by six, the number of coalitions with pivotal players. gC(AB, AC, BCDL+
=

4ê3
6

 = 
4

18
= 

2

9
 = 22.22%.

D gets 
1

3
 in the BCD coalitions for a total sum of 

1

3
. This is then divided by six, the number of coalitions 

with pivotal players. gD(AB, AC, BCDL+
=

1ê3
6

 = 
1

18
 = 5.56%.
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3. The Machiavelli Index

The set of veto power players is a group of players V such that

1. Vi is in all winning coalitions, Vi œ W for all W.

A blocking coalition is a set of players B such that:

1. The complement of B is not winning, (N\B – W),

2. B is not winning, (B – W),

3. Veto power players are not a part of the coalition, HVi – B for all i œ V).

A blocking bloc that blocks other blocking coalitions is a blocking coalition Bb such that 

1. The set of players C outside of Bb and V are not in all winning coalitions, (i – Bb ‹ V implies i œ C, 

there exists an M such that for all  i œ C i – M).

2. Blocking blocs are assumed to form a unanimity game, to give all members veto power. HBb implies 

W
min

= 8Bb ‹ V<+
).

A bloc structure for some proper simple game (N, W) is a proper simple game (P, H) that causes a 

new proper simple game (N, WH) where

1. The group of players P is a subset of the group of players N, (P Õ N),

2. R is some coalition that wins within the bloc, Q is some subset of the players outside the bloc, and 

when R  wins, that causes P to win, and P and Q together are winning, HWV={ R ‹ Q: R œ H, Q Õ N\M, 

and P ‹ Q œ W }).
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A bloc structure for some proper simple game (N, W) is a proper simple game (P, H) that causes a 

new proper simple game (N, WH) where

1. The group of players P is a subset of the group of players N, (P Õ N),

2. R is some coalition that wins within the bloc, Q is some subset of the players outside the bloc, and 

when R  wins, that causes P to win, and P and Q together are winning, HWV={ R ‹ Q: R œ H, Q Õ N\M, 

and P ‹ Q œ W }).

The Machiavelli Index is a way of measuring a priori power in proper simple games. The key idea 

behind this index is that in a non-unanimity voting situation, some group of players can increase their 

power by forming a bloc. In unanimity games, blocs are pointless, because everyone has veto power. 

The Machiavelli Power Index, m, is defined recursively as follows, interspersed with comments and 

intuition. Let m be defined for all proper simple games with fewer than n players.  

In the case of an n-player unanimity game m assigns 
1

n
 power to all players i œ N in the game, (N œ M 

implies  miHN, 8Mu<+L = 1 ên where there are n players i in the only minimal winning coalition Mu.

In games where there are more than one minimal winning coalition, reasonable bloc structures are 

compared to determine what players would actually do based upon their options and the options of their 

opponents. Players are assumed to be power-maximizing. Blocs can be classified as one of five types: 

minimal winning coalitions, non-minimal winning coalitions, blocking coalitions that do not allow other 

blocking coalitions, blocking coalitions that do allow other blocking coalitions, and blocs that are neither 

winning or blocking. Since players V in all winning coalitions already have veto power, they have noth-

ing to gain by joining blocking blocs.

Non-minimal winning coalitions include players that aren't necessary to win. Intuitively, by removing 

these players, everyone else could benefit, or at least not lose power. Blocking blocs that allow other 

blocking blocs are fragile. For example in the game ABC, ADE, B and D could form a blocking bloc. 

This would cause minimal winning coalitions ABCD, ABDE. But, then C and E might form a blocking 

bloc too. Then it is a five player unanimity game ABCDE. It would be smarter for B and D to include C 

or E. If they include C, for example, then ABCD is the only minimal winning coalition. Then, B and D get 

1

4
 of the power instead of 

1

5
. Players that form a bloc that is neither winning nor blocking risk that the 

other players will form a winning bloc, leaving players in the impotent bloc with no power. These intu-

itive eliminations leave us with two kinds of coalitions to consider, minimal winning coalitions and 

blocking coalitions that prevent other blockers. Incidentally,  blocking blocs that prevent other blockers 

imply that those blockers win with the set of all veto power players.

For non unanimity games, m considers the set of blocs Z, where Z = MA ‹ Bb.

Another intuition is that some player i would not join in a bloc with some other player j if j gets more 

power in the bloc but had the same or less power than player i in the original game. The challenge then 

becomes figuring out the power order of the players in the original game. If two players are in all the 

same winning coalitions, they clearly have the same amount of a priori power. Similarly, if some player i 

is in all the winning coalitions that j is in and more, it is clear that i has at least as much power as j. 

Additionally, no player would join a bloc where they get no power. 

A power consistent ordering for some proper simple game (N, W) is defined as follows. 

Suppose HN, WL is a proper simple game and p is a permutation of N.  For each coalition S Õ N, define 

pHSL = 8pHkL : k œ S<.  Also define pHWL = 8pHSL : S Õ N<.  We will call p an automorphism if pHWL = W. 

Suppose HN, WL is a proper simple game.  Players i and j are symmetric if there is an automorphism p 

of N satisfying pHiL = j.  The player power relation §W is defined by i §W j if for some automorphism p 

it follows that S ‹ 8pHiL< œ W implies S ‹ 8 j< œ W for all S Õ N\8pHiL, j<. 
The player power relation §W is defined by i §W j if there are players i ', j ' œ N that are symmetric to i 

and j, respectively, and  S ‹ 8i '< œ W implies S ‹ 8 j '< œ W for all S Õ N\8i ', j '<. 
In sections 4 and 5, the player power relation will be expressed in this notation: µi ≥ µj = µk for some 

players i, j, and k.
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it follows that S ‹ 8pHiL< œ W implies S ‹ 8 j< œ W for all S Õ N\8pHiL, j<. 
The player power relation §W is defined by i §W j if there are players i ', j ' œ N that are symmetric to i 

and j, respectively, and  S ‹ 8i '< œ W implies S ‹ 8 j '< œ W for all S Õ N\8i ', j '<. 
In sections 4 and 5, the player power relation will be expressed in this notation: µi ≥ µj = µk for some 

players i, j, and k.

Dummy players are assigned zero power.

Let HN, WL be a proper simple game with n players for which there is more than one minimal winning 

coalition. If HN, WL has at least one dummy player, then let G be the set of players that are not dum-

mies, let WG = 8S Õ G : S œ W<, and define miHN, WL = miHG, WGL for all i œ G and miHN, WL = 0 for all 

i œ N\G. 

Upon determining important blocs that might form, we assign each bloc all reasonable, power ordered 

divisions of power that were found recursively. 

For all minimal winning blocs M, assign all M all possible dummy-free, power consistent bloc structures. 

Call the set of these structures MS.

For non unanimity games, m considers the set of ZS, where ZS = MS ‹ Bb.

Some bloc F dominates some other bloc H if and only if every player in F has more power than they did 

in H, (F = (P, Q), H = (X, Y) for all i œ P,  miHN, 8WQ<+L > µi HN, 8WY<+ implies HzF). 

For two bloc structures A and B, the notation AL B indicates that both AzB and BzA are false.

Then a directed graph can be drawn with bloc structures as vertices and dominations as edges pointing 

from a dominated structure to a dominating structure. Then, a Von Neumann-Morgenstern idea is used 

to determine which structures are stable. 

The stable set consists of a group of structures S such that

1. S is a subset of the group of blocs being considered ZS, (S Œ ZS),

2. Every structure U outside the stable set is directly dominated by some structure T inside the set, (for 

all  U, there exists a T such that UzT),

3. No structure T inside the stable set is dominated by another structure R inside the stable set, (TLR 

for all T and R in S).

An unstable structure U  refers to a structure not in the stable set, U – S.

A stable structure S1 refers to a structure in the stable set, S1 œ S.
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The stable set consists of a group of structures S such that

1. S is a subset of the group of blocs being considered ZS, (S Œ ZS),

2. Every structure U outside the stable set is directly dominated by some structure T inside the set, (for 

all  U, there exists a T such that UzT),

3. No structure T inside the stable set is dominated by another structure R inside the stable set, (TLR 

for all T and R in S).

An unstable structure U  refers to a structure not in the stable set, U – S.

A stable structure S1 refers to a structure in the stable set, S1 œ S.

In practice, this means that undominated structures are stable, because all unstable structures must be 

dominated by a stable structure. 

To see why these mapping rules make sense, consider this. Suppose that some structure K dominates 

another structure L. Assume, to the contrary, that both are stable. Because K dominates L, every player 

in the bloc K has more power than they do in the bloc L. If K is stable, all players Â in the bloc K would 

benefit by moving to K, because each player Â doesn't have to worry about moving to some other bloc Q 

where Â gets less power than Â did in L. Therefore, all players Â in K cannot lose by moving from L to K. 

So, L and K cannot both be stable.

Suppose there is some structure X dominated only by some structure Y. Suppose Y is dominated only 

by some undominated structure Z. Z is clearly stable, because it is undominated. Assume, to the con-

trary, that X and Y are both unstable. There must be at least one player ü in both X and Y because this 

is a proper simple game. If all players ü that are in X and Y are also in Z, then Z must dominate X. If one 

or more of the players ü in X and Y is not in Z, ü would not be willing to move to bloc structure Y, 

because then other players would move to Z, leaving ü with no power.

Finally, define mHN, WL to be the average of mHN, WHL over all stable bloc structures HP, HL œ ZS.

Like other power indices, the Machiavelli Index is normalized so that all powers add up to 1. 

4. The Index Illustrated Through Four Players

In this section, we will examine the fourteen proper simple games that have no dummies and no more 

than four players (Shapley, 1954). The games are labeled in the same way as they are in Shapley’s 

paper (i.e. the game b. corresponds to the same game as in Shapley’s paper). For shorthand, mA =
1

3
 

really means mAH8A, B, C<, 88A, B<, 8A, C<, 8B, C<, 8A, B, C<<L =
1

3
 in the case of game f.

b. W
min

= 8A<+
 implies mHA, ML = H1L

In a voting situation comprising just one player, there should be no debate as to how to attribute power. 

It is a dictator game.

c. W
min

= 8AB<+
 implies mHAB, ML = I 1

2
,

1

2
M

The only proper two player game is a unanimity game. Therefore mA =
1

2
, mB =

1

2
.

d. W
min

= 8ABC<+
 implies mHABC, ML = I 1

3
,

1

3
,

1

3
M 

Again, we have a unanimity game and consequently its powers are mA =
1

3
, mB =

1

3
, mC =

1

3
.

e. W
min

= 8AB, AC<+
 implies mHABC, ML = I 1

2
,

1

4
,

1

4
M

We have arrived at Shapley’s first non-unanimity game. For this game, minimal winning coalitions are 

AB and AC. Three blocs could form. They are in the chart below. 

The power ordering for this game : mA ¥ mB = mC.

Index Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0 3 −

2 AC MinWin AC AC
1

2
, 0,

1

2
3 −

3 BC Blocking BC ABC
1

3
,

1

3
,

1

3
− 1, 2

Here, if the BC bloc is agreed upon, A could lure either B or C away with the promise of 
1

2
 the power 

instead of 
1

3
. A would also benefit by moving away from structure 3 and to either 1 or 2. Therefore, 

structure 3 is unstable and should not be included in the average. A is indifferent between 1 and 2 so 

neither structure dominates the other. Thus, structures 1 and 2 are averaged to yield the answer mA =
1

2
, 

mB =
1

4
, mC =

1

4
. 
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We have arrived at Shapley’s first non-unanimity game. For this game, minimal winning coalitions are 

AB and AC. Three blocs could form. They are in the chart below. 

The power ordering for this game : mA ¥ mB = mC.

Index Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0 3 −

2 AC MinWin AC AC
1

2
, 0,

1

2
3 −

3 BC Blocking BC ABC
1

3
,

1

3
,

1

3
− 1, 2

Here, if the BC bloc is agreed upon, A could lure either B or C away with the promise of 
1

2
 the power 

instead of 
1

3
. A would also benefit by moving away from structure 3 and to either 1 or 2. Therefore, 

structure 3 is unstable and should not be included in the average. A is indifferent between 1 and 2 so 

neither structure dominates the other. Thus, structures 1 and 2 are averaged to yield the answer mA =
1

2
, 

mB =
1

4
, mC =

1

4
. 

f. W
min

= 8AB, AC, BC<+
 implies mHABC, ML = I 1

3
,

1

3
,

1

3
M

This is the three player majority game with minimal winning coalitions AB, AC, BC.

µA = µB = µC.

Index Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0 − −

2 AC MinWin AC AC
1

2
, 0,

1

2
− −

3 BC MinWin BC BC 0,
1

2
,

1

2
− −

Since there are only undominated structures, all three bloc structures are averaged together. A three 

player majority game is assigned powers mA =
1

3
, mB =

1

3
, mC =

1

3
. 
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This is the three player majority game with minimal winning coalitions AB, AC, BC.

µA = µB = µC.

Index Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0 − −

2 AC MinWin AC AC
1

2
, 0,

1

2
− −

3 BC MinWin BC BC 0,
1

2
,

1

2
− −

Since there are only undominated structures, all three bloc structures are averaged together. A three 

player majority game is assigned powers mA =
1

3
, mB =

1

3
, mC =

1

3
. 

g. W
min

= 8ABCD<+
 implies mHABCD, ML = I 1

4
,

1

4
,

1

4
,

1

4
M

Here, we begin to look at all nine four player proper simple games. The first is simply the four player 

unanimity game which is clearly mA =
1

4
, mB =

1

4
, mC =

1

4
, mD =

1

4
. 

h. W
min

= 8ABC, ABD<+
 implies mHABCD, ML = I 1

3
,

1

3
,

1

6
,

1

6
M

In this game, the 
1

2
, 

1

4
, 

1

4
 kind of structure is impossible because A and B are clearly equals because 

they are both in all winning coalitions. B would not accept taking less than A and vice-versa. Addition-

ally, C or D could not get 
1

2
 because A and B are in all winning coalitions that C and D are in and more.

µA = µB ≥ µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0 3 −

2 ABD MinWin ABD ABD
1

3
,

1

3
, 0,

1

3
3 −

3 CD Block CD ABCD
1

4
,

1

4
,

1

4
,

1

4
− 1, 2

The CD bloc is dominated by structures 1 and 2 because all players in the new bloc could get 
1

3
 instead 

of 
1

4
. So, 3 is unstable and 1 and 2 are averaged to yield mA =

1

3
, mB =

1

3
, mC =

1

6
, mD =

1

6
. 
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In this game, the 
1

2
, 

1

4
, 

1

4
 kind of structure is impossible because A and B are clearly equals because 

they are both in all winning coalitions. B would not accept taking less than A and vice-versa. Addition-

ally, C or D could not get 
1

2
 because A and B are in all winning coalitions that C and D are in and more.

µA = µB ≥ µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0 3 −

2 ABD MinWin ABD ABD
1

3
,

1

3
, 0,

1

3
3 −

3 CD Block CD ABCD
1

4
,

1

4
,

1

4
,

1

4
− 1, 2

The CD bloc is dominated by structures 1 and 2 because all players in the new bloc could get 
1

3
 instead 

of 
1

4
. So, 3 is unstable and 1 and 2 are averaged to yield mA =

1

3
, mB =

1

3
, mC =

1

6
, mD =

1

6
. 

i. W
min

= 8ABC, ABD, ACD<+
 implies mHABCD, ML = I 1

3
,

2

9
,

2

9
,

2

9
M

µA ≥ µB = µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0 − −

2 ABC MinWin AB, AC AB, AC
1

2
,

1

4
,

1

4
, 0 − 7 − 9

3 ABD MinWin ABD ABD
1

3
,

1

3
, 0,

1

3
− −

4 ABD MinWin AB, AD AB, AD
1

2
,

1

4
, 0,

1

4
− 7 − 9

5 ACD MinWin ACD ACD
1

3
, 0,

1

3
,

1

3
− −

6 ACD MinWin AC, AD AC, AD
1

2
, 0,

1

4
,

1

4
− 7 − 9

7 BC Block BC ABC
1

3
,

1

3
,

1

3
, 0 2, 4, 6 −

8 BD Block BD ABD
1

3
,

1

3
, 0,

1

3
2, 4, 6 −

9 CD Block CD ACD
1

3
, 0,

1

3
,

1

3
2, 4, 6 −

Structures 1, 3, 5, 7, 8, and 9 are the only stable structures so they are averaged, yielding mA =
1

3
, 

mB =
2

9
, mC =

2

9
, mD =

2

9
. 

j. W
min

= 8ABC, ABD, ACD, BCD<+
 implies mHABCD, ML = I 1

4
,

1

4
,

1

4
,

1

4
M

In this game there is no player in every winning coalition so blocking blocs are not considered.

µA = µB = µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0 − −

2 ABD MinWin ABD ABD
1

3
,

1

3
, 0,

1

3
− −

3 ACD MinWin ACD ACD
1

3
, 0,

1

3
,

1

3
− −

4 BCD MinWin BCD BCD
1

3
, 0,

1

3
,

1

3
− −

All four structures are undominated and thus stable. mA =
1

4
, mB =

1

4
, mC =

1

4
, mD =

1

4
. 
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In this game there is no player in every winning coalition so blocking blocs are not considered.

µA = µB = µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0 − −

2 ABD MinWin ABD ABD
1

3
,

1

3
, 0,

1

3
− −

3 ACD MinWin ACD ACD
1

3
, 0,

1

3
,

1

3
− −

4 BCD MinWin BCD BCD
1

3
, 0,

1

3
,

1

3
− −

All four structures are undominated and thus stable. mA =
1

4
, mB =

1

4
, mC =

1

4
, mD =

1

4
. 

k. W
min

= 8AB, ACD<+
 implies mHABCD, ML = I 1

2
,

1

4
,

1

8
,

1

8
M

µA ≥ µB ≥ µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0, 0 2, 4, 5 −

2 ACD MinWin ACD ACD
1

3
, 0,

1

3
,

1

3
− 1

3 ACD MinWin AC, AD AC, AD
1

2
, 0,

1

4
,

1

4
− 4, 5

4 BC Block BC ABC
1

3
,

1

3
,

1

3
, 0 3 1

5 BD Block BD ABD
1

3
,

1

3
, 0,

1

3
3 1

Structure 1 is undominated so it is clearly stable. However, structure 3 is also stable, because although 

C or D could gain power by moving to structure 4 or 5, B would promptly abandon them and move to 

structure 1 where both C and D get no power. Therefore, C and D would stay at structure 3. Averaging 

1 and 3 we get mA =
1

2
, mB =

1

4
, mC =

1

8
, mD =

1

8
. 
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µA ≥ µB ≥ µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0, 0 2, 4, 5 −

2 ACD MinWin ACD ACD
1

3
, 0,

1

3
,

1

3
− 1

3 ACD MinWin AC, AD AC, AD
1

2
, 0,

1

4
,

1

4
− 4, 5

4 BC Block BC ABC
1

3
,

1

3
,

1

3
, 0 3 1

5 BD Block BD ABD
1

3
,

1

3
, 0,

1

3
3 1

Structure 1 is undominated so it is clearly stable. However, structure 3 is also stable, because although 

C or D could gain power by moving to structure 4 or 5, B would promptly abandon them and move to 

structure 1 where both C and D get no power. Therefore, C and D would stay at structure 3. Averaging 

1 and 3 we get mA =
1

2
, mB =

1

4
, mC =

1

8
, mD =

1

8
. 

l. W
min

= 8AB, ACD, BCD<+
 implies mHABCD, ML = I 1

3
,

1

3
,

1

6
,

1

6
M

µA = µB ≥ µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0, 0 2, 4 −

2 ACD MinWin ACD ACD
1

3
, 0,

1

3
,

1

3
5 1

3 ACD MinWin AC, AD AC, AD
1

2
, 0,

1

4
,

1

4
− 4

4 BCD MinWin BCD BCD 0,
1

3
,

1

3
,

1

3
3 1

5 BCD MinWin BC, BD BC, BD 0,
1

2
,

1

4
,

1

4
− 2

1 is undominated so it is stable. 2 and 4 are unstable because they are dominated by a stable structure. 

Structures 3 and 5 are dominated by only unstable structures, so they are stable. The average of 1, 3, 

and 5 is mA =
1

3
, mB =

1

3
, mC =

1

6
, mD =

1

6
. 

m. W
min

= 8AB, AC, BCD<+
 implies mHABCD, ML = I 1

2
,

1

4
,

1

4
, 0M

µA ≥ µB = µC ≥ µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0, 0 3, 4 −

2 AC MinWin AC AC
1

2
, 0,

1

2
, 0 3, 4 −

3 BCD MinWin BCD BCD 0,
1

3
,

1

3
,

1

3
− 1, 2

4 BCD MinWin BCD BCD 0,
1

3
,

1

3
,

1

3
− 1, 2

1 and 2 are stable, 3 and 4 are unstable. mA =
1

2
, mB =

1

4
, mC =

1

4
, mD = 0.  Perhaps counter intuitively, D 

gets no power despite being in a minimal winning coalition. However, A can offer B and C 
1

2
 of the 

power. The only way a BCD bloc could compete would be for D to give each B and C half of the power, 

but this again leaves D with none, which doesn’t help D at all. 
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µA ≥ µB = µC ≥ µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0, 0 3, 4 −

2 AC MinWin AC AC
1

2
, 0,

1

2
, 0 3, 4 −

3 BCD MinWin BCD BCD 0,
1

3
,

1

3
,

1

3
− 1, 2

4 BCD MinWin BCD BCD 0,
1

3
,

1

3
,

1

3
− 1, 2

1 and 2 are stable, 3 and 4 are unstable. mA =
1

2
, mB =

1

4
, mC =

1

4
, mD = 0.  Perhaps counter intuitively, D 

gets no power despite being in a minimal winning coalition. However, A can offer B and C 
1

2
 of the 

power. The only way a BCD bloc could compete would be for D to give each B and C half of the power, 

but this again leaves D with none, which doesn’t help D at all. 

n. W
min

= 8AB, AC, AD<+
 implies mHABCD, ML = I 1

2
,

1

6
,

1

6
,

1

6
M

µA ≥ µB = µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0, 0 4 −

2 AC MinWin AC AC
1

2
, 0,

1

2
, 0 4 −

3 AD MinWin AD AD
1

2
, 0, 0,

1

2
4 −

4 BCD Blocking BCD ABCD
1

4
,

1

4
,

1

4
,

1

4
− 1 − 3

1, 2, and 3 are averaged to yield the answer mA =
1

2
, mB =

1

6
, mC =

1

6
, mD =

1

6
. 

o. W
min

= 8AB, AC, AD, BCD<+
 implies mHABCD, ML = I 1

2
,

1

6
,

1

6
,

1

6
M

µA ≥ µB = µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0, 0 4 −

2 AC MinWin AC AC
1

2
, 0,

1

2
, 0 4 −

3 AD MinWin AD AD
1

2
, 0, 0,

1

2
4 −

4 BCD MinWin BCD BCD 0,
1

3
,

1

3
,

1

3
− 1 − 3

The BCD bloc gains more power than in the previous game, but ultimately fails to compete with struc-

tures 1, 2, and 3. mA =
1

2
, mB =

1

6
, mC =

1

6
, mD =

1

6
. 
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µA ≥ µB = µC = µD.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 AB MinWin AB AB
1

2
,

1

2
, 0, 0 4 −

2 AC MinWin AC AC
1

2
, 0,

1

2
, 0 4 −

3 AD MinWin AD AD
1

2
, 0, 0,

1

2
4 −

4 BCD MinWin BCD BCD 0,
1

3
,

1

3
,

1

3
− 1 − 3

The BCD bloc gains more power than in the previous game, but ultimately fails to compete with struc-

tures 1, 2, and 3. mA =
1

2
, mB =

1

6
, mC =

1

6
, mD =

1

6
. 

Proofs

No player can ever have greater than 
1

2
 power.

5. Problems and Paradoxes

W
min

= 8ABC, ADEF, BDEF, CDEF, ABDE,

ABDF, ABEF, ACDE, ACDF, ACEF, BCDE, BCDF, BCEF<+

 implies 

mHABCDEF, ML = I 1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
M

The game with minimal winning coalitions ABC, ADEF, BDEF, CDEF, ABDE, ABDF, ABEF, ACDE, 

ACDF, ACEF, BCDE, BCDF, BCEF has no undominated structures. 

µA = µB = µC ≥ µD = µE = µF.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0, 0, 0 2 − 4, 11 − 19 8 − 10

2 ADEF MinWin ADEF ADEF
1

4
, 0, 0,

1

4
,

1

4
,

1

4
6, 7, 9, 10, 26 − 28 1

3 BDEF MinWin BDEF BDEF 0,
1

4
, 0,

1

4
,

1

4
,

1

4
5, 7, 8, 10, 23 − 25 1

4 CDEF MinWin CDEF CDEF 0, 0,
1

4
,

1

4
,

1

4
,

1

4
5, 6, 8, 9, 20 − 22 1

5 ADEF MinWin ADE, ADF, AEF ADE, ADF, AEF
1

3
, 0, 0,

2

9
,

2

9
,

2

9
9, 10, 26 − 28 3, 4, 17 − 19

6 BDEF MinWin BDE, BDF, BEF BDE, BDF, BEF 0,
1

3
, 0,

2

9
,

2

9
,

2

9
8, 10, 23 − 25 2, 4, 14 − 16

7 CDEF MinWin CDE, CDF, CEF CDE, CDF, CEF 0, 0,
1

3
,

2

9
,

2

9
,

2

9
8, 9, 20 − 22 2, 3, 11 − 13

8 ADEF MinWin AD, AE, AF AD, AE, AF
1

2
, 0, 0,

1

6
,

1

6
,

1

6
1 3, 4, 6, 7, 17 − 19

9 BDEF MinWin BD, BE, BF BD, BE, BF 0,
1

2
, 0,

1

6
,

1

6
,

1

6
1 2, 4, 5, 7, 14 − 16

10 CDEF MinWin CD, CE, CF CD, CE, CF 0, 0,
1

2
,

1

6
,

1

6
,

1

6
1 2, 3, 5, 6, 11 − 13

11 ABDE MinWin ABDE ABDE
1

4
,

1

4
, 0,

1

4
,

1

4
, 0 7, 10 1

12 ABDF MinWin ABDF ABDF
1

4
,

1

4
, 0,

1

4
, 0,

1

4
7, 10 1

13 ABEF MinWin ABEF ABEF
1

4
,

1

4
, 0, 0,

1

4
,

1

4
7, 10 1

14 ACDE MinWin ACDE ACDE
1

4
, 0,

1

4
,

1

4
,

1

4
, 0 6, 9 1

15 ACDF MinWin ACDF ACDF
1

4
, 0,

1

4
,

1

4
, 0,

1

4
6, 9 1

16 ACEF MinWin ACEF ACEF
1

4
, 0,

1

4
, 0,

1

4
,

1

4
6, 9 1

17 BCDE MinWin BCDE BCDE 0,
1

4
,

1

4
,

1

4
,

1

4
, 0 5, 8 1

18 BCDF MinWin BCDF BCDF 0,
1

4
,

1

4
,

1

4
, 0,

1

4
5, 8 1

19 BCEF MinWin BCEF BCEF 0,
1

4
,

1

4
, 0,

1

4
,

1

4
5, 8 1

20 ABDE MinWin ABD, ABE ABD, ABE
1

3
,

1

3
, 0,

1

6
,

1

6
, 0 − 4, 7

21 ABDF MinWin ABD, ABF ABD, ABF
1

3
,

1

3
, 0,

1

6
, 0,

1

6
− 4, 7

22 ABEF MinWin ABE, ABF ABE, ABF
1

3
,

1

3
, 0, 0,

1

6
,

1

6
− 4, 7

23 ACDE MinWin ACD, ACE ACD, ACE
1

3
, 0,

1

3
,

1

6
,

1

6
, 0 − 3, 6

24 ACDF MinWin ACD, ACF ACD, ACF
1

3
, 0,

1

3
,

1

6
, 0,

1

6
− 3, 6

25 ACEF MinWin ACE, ACF ACE, ACF
1

3
, 0,

1

3
, 0,

1

6
,

1

6
− 3, 6

26 BCDE MinWin BCD, BCE BCD, BCE 0,
1

3
,

1

3
,

1

6
,

1

6
, 0 − 2, 5

27 BCDF MinWin BCD, BCF BCD, BCF 0,
1

3
,

1

3
,

1

6
, 0,

1

6
− 2, 5

28 BCEF MinWin BCE, BCF BCE, BCF 0,
1

3
,

1

3
, 0,

1

6
,

1

6
− 2, 5

1

8-10

20-2811-19

2-4

5-7

This second graph is perhaps an oversimplification, because, for example, 5 does not dominate every-

thing 20-28. However, it is far easier to see what is going on here than in the graph above where all 28 

structures are included. This particular game presents a problem because there are no undominated 

structures. Fortunately, the Von Neumann-Morgenstern labeling process still works for this problem 

through a guess and check method. 

Proof of Stability:

Suppose 1 is stable. Then 2-4, 8-19 are unstable. Then 5, 6, and 7 are dominated only by 2-4, 11-19, 

all of which are unstable. Therefore, 5-7 are stable. Now, 20-28 are unstable because each of them is 

dominated by a stable structure, either 5, 6, or 7. Then, {1, 5, 6, 7} is one possible stable set.

Now suppose 1 is not stable and at least one of 2-4 is stable. Without loss of generality, suppose 2 is 

stable. Then 1 must be unstable. Then at least one of 8-10 must be stable. Then at least three of 11-19 

must be unstable. But the only thing that dominates 11-19 is 1. Since 1 is unstable, 11-19 must be 

stable. 11-19 cannot be both stable and unstable. 

Now suppose 1-4 are not stable and at least one of 5-7 is stable. Without loss of generality, suppose 5. 

Then 3, 4, 9, 10, 17-19, 26-28 are unstable. 3 and 4 must be dominated by a stable structure, so 1 is 

stable, a contradiction.

Suppose 1-7 are not stable and at least one of 8-10 is stable. Without loss of generality, suppose 8. 

Then 1 and 17-19 are unstable. But, 17-19 are only dominated by 1, which implies a contradiction.

Suppose 1-10 are not stable and at least one of 11-19 is stable. Without loss of generality, suppose 11. 

Then 1, 7, 10 must be unstable. If 1 is unstable, 2-4 must be stable. But this implies that 8-10 must be 

unstable. But 1 must be dominated by something stable and it is only dominated by 8-10. Therefore, 

11-19 cannot be stable.

Suppose 1-10 are not stable and at least one of 20-28 is stable. Then 2-7 are unstable. Since 2-4 are 

unstable, 1 must be stable. Since 1 is stable, 11-19 must be unstable. But then 5-7 are dominated by 

2-4, 11-19, all of which are unstable. This is a contradiction.

Therefore, {1, 5, 6, 7} is the only stable set for the game [9; 3, 3, 3, 2, 2, 2]. By averaging the powers of 

the games 1, 5, 6, 7 we get the answer A =
1

6
, B =

1

6
, C =

1

6
, D =

1

6
, E =

1

6
, F =

1

6
. It could be argued that 

A, B, and C clearly have more power than D, E, and F and thus should get more power. That issue 

could be resolved by weighting 1, 5, 6, and 7 in some different, but reasonable, way.
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The game with minimal winning coalitions ABC, ADEF, BDEF, CDEF, ABDE, ABDF, ABEF, ACDE, 

ACDF, ACEF, BCDE, BCDF, BCEF has no undominated structures. 

µA = µB = µC ≥ µD = µE = µF.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0, 0, 0 2 − 4, 11 − 19 8 − 10

2 ADEF MinWin ADEF ADEF
1

4
, 0, 0,

1

4
,

1

4
,

1

4
6, 7, 9, 10, 26 − 28 1

3 BDEF MinWin BDEF BDEF 0,
1

4
, 0,

1

4
,

1

4
,

1

4
5, 7, 8, 10, 23 − 25 1

4 CDEF MinWin CDEF CDEF 0, 0,
1

4
,

1

4
,

1

4
,

1

4
5, 6, 8, 9, 20 − 22 1

5 ADEF MinWin ADE, ADF, AEF ADE, ADF, AEF
1

3
, 0, 0,

2

9
,

2

9
,

2

9
9, 10, 26 − 28 3, 4, 17 − 19

6 BDEF MinWin BDE, BDF, BEF BDE, BDF, BEF 0,
1

3
, 0,

2

9
,

2

9
,

2

9
8, 10, 23 − 25 2, 4, 14 − 16

7 CDEF MinWin CDE, CDF, CEF CDE, CDF, CEF 0, 0,
1

3
,

2

9
,

2

9
,

2

9
8, 9, 20 − 22 2, 3, 11 − 13

8 ADEF MinWin AD, AE, AF AD, AE, AF
1

2
, 0, 0,

1

6
,

1

6
,

1

6
1 3, 4, 6, 7, 17 − 19

9 BDEF MinWin BD, BE, BF BD, BE, BF 0,
1

2
, 0,

1

6
,

1

6
,

1

6
1 2, 4, 5, 7, 14 − 16

10 CDEF MinWin CD, CE, CF CD, CE, CF 0, 0,
1

2
,

1

6
,

1

6
,

1

6
1 2, 3, 5, 6, 11 − 13

11 ABDE MinWin ABDE ABDE
1

4
,

1

4
, 0,

1

4
,

1

4
, 0 7, 10 1

12 ABDF MinWin ABDF ABDF
1

4
,

1

4
, 0,

1

4
, 0,

1

4
7, 10 1

13 ABEF MinWin ABEF ABEF
1

4
,

1

4
, 0, 0,

1

4
,

1

4
7, 10 1

14 ACDE MinWin ACDE ACDE
1

4
, 0,

1

4
,

1

4
,

1

4
, 0 6, 9 1

15 ACDF MinWin ACDF ACDF
1

4
, 0,

1

4
,

1

4
, 0,

1

4
6, 9 1

16 ACEF MinWin ACEF ACEF
1

4
, 0,

1

4
, 0,

1

4
,

1

4
6, 9 1

17 BCDE MinWin BCDE BCDE 0,
1

4
,

1

4
,

1

4
,

1

4
, 0 5, 8 1

18 BCDF MinWin BCDF BCDF 0,
1

4
,

1

4
,

1

4
, 0,

1

4
5, 8 1

19 BCEF MinWin BCEF BCEF 0,
1

4
,

1

4
, 0,

1

4
,

1

4
5, 8 1

20 ABDE MinWin ABD, ABE ABD, ABE
1

3
,

1

3
, 0,

1

6
,

1

6
, 0 − 4, 7

21 ABDF MinWin ABD, ABF ABD, ABF
1

3
,

1

3
, 0,

1

6
, 0,

1

6
− 4, 7

22 ABEF MinWin ABE, ABF ABE, ABF
1

3
,

1

3
, 0, 0,

1

6
,

1

6
− 4, 7

23 ACDE MinWin ACD, ACE ACD, ACE
1

3
, 0,

1

3
,

1

6
,

1

6
, 0 − 3, 6

24 ACDF MinWin ACD, ACF ACD, ACF
1

3
, 0,

1

3
,

1

6
, 0,

1

6
− 3, 6

25 ACEF MinWin ACE, ACF ACE, ACF
1

3
, 0,

1

3
, 0,

1

6
,

1

6
− 3, 6

26 BCDE MinWin BCD, BCE BCD, BCE 0,
1

3
,

1

3
,

1

6
,

1

6
, 0 − 2, 5

27 BCDF MinWin BCD, BCF BCD, BCF 0,
1

3
,

1

3
,

1

6
, 0,

1

6
− 2, 5

28 BCEF MinWin BCE, BCF BCE, BCF 0,
1

3
,

1

3
, 0,

1

6
,

1

6
− 2, 5

1

8-10

20-2811-19

2-4

5-7

This second graph is perhaps an oversimplification, because, for example, 5 does not dominate every-

thing 20-28. However, it is far easier to see what is going on here than in the graph above where all 28 

structures are included. This particular game presents a problem because there are no undominated 

structures. Fortunately, the Von Neumann-Morgenstern labeling process still works for this problem 

through a guess and check method. 

Proof of Stability:

Suppose 1 is stable. Then 2-4, 8-19 are unstable. Then 5, 6, and 7 are dominated only by 2-4, 11-19, 

all of which are unstable. Therefore, 5-7 are stable. Now, 20-28 are unstable because each of them is 

dominated by a stable structure, either 5, 6, or 7. Then, {1, 5, 6, 7} is one possible stable set.

Now suppose 1 is not stable and at least one of 2-4 is stable. Without loss of generality, suppose 2 is 

stable. Then 1 must be unstable. Then at least one of 8-10 must be stable. Then at least three of 11-19 

must be unstable. But the only thing that dominates 11-19 is 1. Since 1 is unstable, 11-19 must be 

stable. 11-19 cannot be both stable and unstable. 

Now suppose 1-4 are not stable and at least one of 5-7 is stable. Without loss of generality, suppose 5. 

Then 3, 4, 9, 10, 17-19, 26-28 are unstable. 3 and 4 must be dominated by a stable structure, so 1 is 

stable, a contradiction.

Suppose 1-7 are not stable and at least one of 8-10 is stable. Without loss of generality, suppose 8. 

Then 1 and 17-19 are unstable. But, 17-19 are only dominated by 1, which implies a contradiction.

Suppose 1-10 are not stable and at least one of 11-19 is stable. Without loss of generality, suppose 11. 

Then 1, 7, 10 must be unstable. If 1 is unstable, 2-4 must be stable. But this implies that 8-10 must be 

unstable. But 1 must be dominated by something stable and it is only dominated by 8-10. Therefore, 

11-19 cannot be stable.

Suppose 1-10 are not stable and at least one of 20-28 is stable. Then 2-7 are unstable. Since 2-4 are 

unstable, 1 must be stable. Since 1 is stable, 11-19 must be unstable. But then 5-7 are dominated by 

2-4, 11-19, all of which are unstable. This is a contradiction.

Therefore, {1, 5, 6, 7} is the only stable set for the game [9; 3, 3, 3, 2, 2, 2]. By averaging the powers of 

the games 1, 5, 6, 7 we get the answer A =
1

6
, B =

1

6
, C =

1

6
, D =

1

6
, E =

1

6
, F =

1

6
. It could be argued that 

A, B, and C clearly have more power than D, E, and F and thus should get more power. That issue 

could be resolved by weighting 1, 5, 6, and 7 in some different, but reasonable, way.
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The game with minimal winning coalitions ABC, ADEF, BDEF, CDEF, ABDE, ABDF, ABEF, ACDE, 

ACDF, ACEF, BCDE, BCDF, BCEF has no undominated structures. 

µA = µB = µC ≥ µD = µE = µF.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0, 0, 0 2 − 4, 11 − 19 8 − 10

2 ADEF MinWin ADEF ADEF
1

4
, 0, 0,

1

4
,

1

4
,

1

4
6, 7, 9, 10, 26 − 28 1

3 BDEF MinWin BDEF BDEF 0,
1

4
, 0,

1

4
,

1

4
,

1

4
5, 7, 8, 10, 23 − 25 1

4 CDEF MinWin CDEF CDEF 0, 0,
1

4
,

1

4
,

1

4
,

1

4
5, 6, 8, 9, 20 − 22 1

5 ADEF MinWin ADE, ADF, AEF ADE, ADF, AEF
1

3
, 0, 0,

2

9
,

2

9
,

2

9
9, 10, 26 − 28 3, 4, 17 − 19

6 BDEF MinWin BDE, BDF, BEF BDE, BDF, BEF 0,
1

3
, 0,

2

9
,

2

9
,

2

9
8, 10, 23 − 25 2, 4, 14 − 16

7 CDEF MinWin CDE, CDF, CEF CDE, CDF, CEF 0, 0,
1

3
,

2

9
,

2

9
,

2

9
8, 9, 20 − 22 2, 3, 11 − 13

8 ADEF MinWin AD, AE, AF AD, AE, AF
1

2
, 0, 0,

1

6
,

1

6
,

1

6
1 3, 4, 6, 7, 17 − 19

9 BDEF MinWin BD, BE, BF BD, BE, BF 0,
1

2
, 0,

1

6
,

1

6
,

1

6
1 2, 4, 5, 7, 14 − 16

10 CDEF MinWin CD, CE, CF CD, CE, CF 0, 0,
1

2
,

1

6
,

1

6
,

1

6
1 2, 3, 5, 6, 11 − 13

11 ABDE MinWin ABDE ABDE
1

4
,

1

4
, 0,

1

4
,

1

4
, 0 7, 10 1

12 ABDF MinWin ABDF ABDF
1

4
,

1

4
, 0,

1

4
, 0,

1

4
7, 10 1

13 ABEF MinWin ABEF ABEF
1

4
,

1

4
, 0, 0,

1

4
,

1

4
7, 10 1

14 ACDE MinWin ACDE ACDE
1

4
, 0,

1

4
,

1

4
,

1

4
, 0 6, 9 1

15 ACDF MinWin ACDF ACDF
1

4
, 0,

1

4
,

1

4
, 0,

1

4
6, 9 1

16 ACEF MinWin ACEF ACEF
1

4
, 0,

1

4
, 0,

1

4
,

1

4
6, 9 1

17 BCDE MinWin BCDE BCDE 0,
1

4
,

1

4
,

1

4
,

1

4
, 0 5, 8 1

18 BCDF MinWin BCDF BCDF 0,
1

4
,

1

4
,

1

4
, 0,

1

4
5, 8 1

19 BCEF MinWin BCEF BCEF 0,
1

4
,

1

4
, 0,

1

4
,

1

4
5, 8 1

20 ABDE MinWin ABD, ABE ABD, ABE
1

3
,

1

3
, 0,

1

6
,

1

6
, 0 − 4, 7

21 ABDF MinWin ABD, ABF ABD, ABF
1

3
,

1

3
, 0,

1

6
, 0,

1

6
− 4, 7

22 ABEF MinWin ABE, ABF ABE, ABF
1

3
,

1

3
, 0, 0,

1

6
,

1

6
− 4, 7

23 ACDE MinWin ACD, ACE ACD, ACE
1

3
, 0,

1

3
,

1

6
,

1

6
, 0 − 3, 6

24 ACDF MinWin ACD, ACF ACD, ACF
1

3
, 0,

1

3
,

1

6
, 0,

1

6
− 3, 6

25 ACEF MinWin ACE, ACF ACE, ACF
1

3
, 0,

1

3
, 0,

1

6
,

1

6
− 3, 6

26 BCDE MinWin BCD, BCE BCD, BCE 0,
1

3
,

1

3
,

1

6
,

1

6
, 0 − 2, 5

27 BCDF MinWin BCD, BCF BCD, BCF 0,
1

3
,

1

3
,

1

6
, 0,

1

6
− 2, 5

28 BCEF MinWin BCE, BCF BCE, BCF 0,
1

3
,

1

3
, 0,

1

6
,

1

6
− 2, 5

1

8-10

20-2811-19

2-4

5-7

This second graph is perhaps an oversimplification, because, for example, 5 does not dominate every-

thing 20-28. However, it is far easier to see what is going on here than in the graph above where all 28 

structures are included. This particular game presents a problem because there are no undominated 

structures. Fortunately, the Von Neumann-Morgenstern labeling process still works for this problem 

through a guess and check method. 

Proof of Stability:

Suppose 1 is stable. Then 2-4, 8-19 are unstable. Then 5, 6, and 7 are dominated only by 2-4, 11-19, 

all of which are unstable. Therefore, 5-7 are stable. Now, 20-28 are unstable because each of them is 

dominated by a stable structure, either 5, 6, or 7. Then, {1, 5, 6, 7} is one possible stable set.

Now suppose 1 is not stable and at least one of 2-4 is stable. Without loss of generality, suppose 2 is 

stable. Then 1 must be unstable. Then at least one of 8-10 must be stable. Then at least three of 11-19 

must be unstable. But the only thing that dominates 11-19 is 1. Since 1 is unstable, 11-19 must be 

stable. 11-19 cannot be both stable and unstable. 

Now suppose 1-4 are not stable and at least one of 5-7 is stable. Without loss of generality, suppose 5. 

Then 3, 4, 9, 10, 17-19, 26-28 are unstable. 3 and 4 must be dominated by a stable structure, so 1 is 

stable, a contradiction.

Suppose 1-7 are not stable and at least one of 8-10 is stable. Without loss of generality, suppose 8. 

Then 1 and 17-19 are unstable. But, 17-19 are only dominated by 1, which implies a contradiction.

Suppose 1-10 are not stable and at least one of 11-19 is stable. Without loss of generality, suppose 11. 

Then 1, 7, 10 must be unstable. If 1 is unstable, 2-4 must be stable. But this implies that 8-10 must be 

unstable. But 1 must be dominated by something stable and it is only dominated by 8-10. Therefore, 

11-19 cannot be stable.

Suppose 1-10 are not stable and at least one of 20-28 is stable. Then 2-7 are unstable. Since 2-4 are 

unstable, 1 must be stable. Since 1 is stable, 11-19 must be unstable. But then 5-7 are dominated by 

2-4, 11-19, all of which are unstable. This is a contradiction.

Therefore, {1, 5, 6, 7} is the only stable set for the game [9; 3, 3, 3, 2, 2, 2]. By averaging the powers of 

the games 1, 5, 6, 7 we get the answer A =
1

6
, B =

1

6
, C =

1

6
, D =

1

6
, E =

1

6
, F =

1

6
. It could be argued that 

A, B, and C clearly have more power than D, E, and F and thus should get more power. That issue 

could be resolved by weighting 1, 5, 6, and 7 in some different, but reasonable, way.
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The game with minimal winning coalitions ABC, ADEF, BDEF, CDEF, ABDE, ABDF, ABEF, ACDE, 

ACDF, ACEF, BCDE, BCDF, BCEF has no undominated structures. 

µA = µB = µC ≥ µD = µE = µF.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABC MinWin ABC ABC
1

3
,

1

3
,

1

3
, 0, 0, 0 2 − 4, 11 − 19 8 − 10

2 ADEF MinWin ADEF ADEF
1

4
, 0, 0,

1

4
,

1

4
,

1

4
6, 7, 9, 10, 26 − 28 1

3 BDEF MinWin BDEF BDEF 0,
1

4
, 0,

1

4
,

1

4
,

1

4
5, 7, 8, 10, 23 − 25 1

4 CDEF MinWin CDEF CDEF 0, 0,
1

4
,

1

4
,

1

4
,

1

4
5, 6, 8, 9, 20 − 22 1

5 ADEF MinWin ADE, ADF, AEF ADE, ADF, AEF
1

3
, 0, 0,

2

9
,

2

9
,

2

9
9, 10, 26 − 28 3, 4, 17 − 19

6 BDEF MinWin BDE, BDF, BEF BDE, BDF, BEF 0,
1

3
, 0,

2

9
,

2

9
,

2

9
8, 10, 23 − 25 2, 4, 14 − 16

7 CDEF MinWin CDE, CDF, CEF CDE, CDF, CEF 0, 0,
1

3
,

2

9
,

2

9
,

2

9
8, 9, 20 − 22 2, 3, 11 − 13

8 ADEF MinWin AD, AE, AF AD, AE, AF
1

2
, 0, 0,

1

6
,

1

6
,

1

6
1 3, 4, 6, 7, 17 − 19

9 BDEF MinWin BD, BE, BF BD, BE, BF 0,
1

2
, 0,

1

6
,

1

6
,

1

6
1 2, 4, 5, 7, 14 − 16

10 CDEF MinWin CD, CE, CF CD, CE, CF 0, 0,
1

2
,

1

6
,

1

6
,

1

6
1 2, 3, 5, 6, 11 − 13

11 ABDE MinWin ABDE ABDE
1

4
,

1

4
, 0,

1

4
,

1

4
, 0 7, 10 1

12 ABDF MinWin ABDF ABDF
1

4
,

1

4
, 0,

1

4
, 0,

1

4
7, 10 1

13 ABEF MinWin ABEF ABEF
1

4
,

1

4
, 0, 0,

1

4
,

1

4
7, 10 1

14 ACDE MinWin ACDE ACDE
1

4
, 0,

1

4
,

1

4
,

1

4
, 0 6, 9 1

15 ACDF MinWin ACDF ACDF
1

4
, 0,

1

4
,

1

4
, 0,

1

4
6, 9 1

16 ACEF MinWin ACEF ACEF
1

4
, 0,

1

4
, 0,

1

4
,

1

4
6, 9 1

17 BCDE MinWin BCDE BCDE 0,
1

4
,

1

4
,

1

4
,

1

4
, 0 5, 8 1

18 BCDF MinWin BCDF BCDF 0,
1

4
,

1

4
,

1

4
, 0,

1

4
5, 8 1

19 BCEF MinWin BCEF BCEF 0,
1

4
,

1

4
, 0,

1

4
,

1

4
5, 8 1

20 ABDE MinWin ABD, ABE ABD, ABE
1

3
,

1

3
, 0,

1

6
,

1

6
, 0 − 4, 7

21 ABDF MinWin ABD, ABF ABD, ABF
1

3
,

1

3
, 0,

1

6
, 0,

1

6
− 4, 7

22 ABEF MinWin ABE, ABF ABE, ABF
1

3
,

1

3
, 0, 0,

1

6
,

1

6
− 4, 7

23 ACDE MinWin ACD, ACE ACD, ACE
1

3
, 0,

1

3
,

1

6
,

1

6
, 0 − 3, 6

24 ACDF MinWin ACD, ACF ACD, ACF
1

3
, 0,

1

3
,

1

6
, 0,

1

6
− 3, 6

25 ACEF MinWin ACE, ACF ACE, ACF
1

3
, 0,

1

3
, 0,

1

6
,

1

6
− 3, 6

26 BCDE MinWin BCD, BCE BCD, BCE 0,
1

3
,

1

3
,

1

6
,

1

6
, 0 − 2, 5

27 BCDF MinWin BCD, BCF BCD, BCF 0,
1

3
,

1

3
,

1

6
, 0,

1

6
− 2, 5

28 BCEF MinWin BCE, BCF BCE, BCF 0,
1

3
,

1

3
, 0,

1

6
,

1

6
− 2, 5

1

8-10

20-2811-19

2-4

5-7

This second graph is perhaps an oversimplification, because, for example, 5 does not dominate every-

thing 20-28. However, it is far easier to see what is going on here than in the graph above where all 28 

structures are included. This particular game presents a problem because there are no undominated 

structures. Fortunately, the Von Neumann-Morgenstern labeling process still works for this problem 

through a guess and check method. 

Proof of Stability:

Suppose 1 is stable. Then 2-4, 8-19 are unstable. Then 5, 6, and 7 are dominated only by 2-4, 11-19, 

all of which are unstable. Therefore, 5-7 are stable. Now, 20-28 are unstable because each of them is 

dominated by a stable structure, either 5, 6, or 7. Then, {1, 5, 6, 7} is one possible stable set.

Now suppose 1 is not stable and at least one of 2-4 is stable. Without loss of generality, suppose 2 is 

stable. Then 1 must be unstable. Then at least one of 8-10 must be stable. Then at least three of 11-19 

must be unstable. But the only thing that dominates 11-19 is 1. Since 1 is unstable, 11-19 must be 

stable. 11-19 cannot be both stable and unstable. 

Now suppose 1-4 are not stable and at least one of 5-7 is stable. Without loss of generality, suppose 5. 

Then 3, 4, 9, 10, 17-19, 26-28 are unstable. 3 and 4 must be dominated by a stable structure, so 1 is 

stable, a contradiction.

Suppose 1-7 are not stable and at least one of 8-10 is stable. Without loss of generality, suppose 8. 

Then 1 and 17-19 are unstable. But, 17-19 are only dominated by 1, which implies a contradiction.

Suppose 1-10 are not stable and at least one of 11-19 is stable. Without loss of generality, suppose 11. 

Then 1, 7, 10 must be unstable. If 1 is unstable, 2-4 must be stable. But this implies that 8-10 must be 

unstable. But 1 must be dominated by something stable and it is only dominated by 8-10. Therefore, 

11-19 cannot be stable.

Suppose 1-10 are not stable and at least one of 20-28 is stable. Then 2-7 are unstable. Since 2-4 are 

unstable, 1 must be stable. Since 1 is stable, 11-19 must be unstable. But then 5-7 are dominated by 

2-4, 11-19, all of which are unstable. This is a contradiction.

Therefore, {1, 5, 6, 7} is the only stable set for the game [9; 3, 3, 3, 2, 2, 2]. By averaging the powers of 

the games 1, 5, 6, 7 we get the answer A =
1

6
, B =

1

6
, C =

1

6
, D =

1

6
, E =

1

6
, F =

1

6
. It could be argued that 

A, B, and C clearly have more power than D, E, and F and thus should get more power. That issue 

could be resolved by weighting 1, 5, 6, and 7 in some different, but reasonable, way.

The Triangle Problem: Wmin = 8ABCD, ABEF<+

µA = µB ≥ µC = µD = µE = µF.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABCD MinWin ABCD ABCD
1

4
,

1

4
,

1

4
,

1

4
, 0, 0 5 − 8 4

2 ABCD MinWin AB, ACD, BCD AB, ACD, BCD
1

3
,

1

3
,

1

6
,

1

6
, 0, 0 3 5 − 8

3 ABEF MinWin ABEF ABEF
1

4
,

1

4
, 0, 0,

1

4
,

1

4
5 − 8 2

4 ABEF MinWin AB, AEF, BEF AB, AEF, BEF
1

3
,

1

3
, 0, 0,

1

6
,

1

6
1 5 − 8

5 CDE Blocking CDE ABCDE
1

5
,

1

5
,

1

5
,

1

5
,

1

5
, 0 2, 4 1, 3

6 CDF Blocking CDF ABCDF
1

5
,

1

5
,

1

5
,

1

5
, 0,

1

5
2, 4 1, 3

7 CEF Blocking CEF ABCEF
1

5
,

1

5
,

1

5
, 0,

1

5
,

1

5
2, 4 1, 3

8 DEF Blocking DEF ABDEF
1

5
,

1

5
, 0,

1

5
,

1

5
,

1

5
2, 4 1, 3

In this game, it is clear that there are no undominated structures. However, unlike the last game, it is 

impossible to use the Von Neumann-Morgenstern labeling ideas without running into a contradiction.

Proof:

Suppose 1 or 3 is stable. Suppose 1. Then 4, 5-8 must be unstable. 4 is dominated only by 5-8, all of 

which are now unstable. An unstable structure cannot be dominated only by unstable structures. There-

fore, 1 and 3 cannot be stable.

Now assume that 1 and 3 are unstable and 2 or 4 is stable. Assume 2, without loss of generality. Then 

1, 3, 5-8 are unstable. 5-8 are dominated by 1 and 3. 3 and 1 are unstable, but 5-8 must be dominated 

by a stable structure, a contradiction.

Suppose 1-4 are unstable and at least one of 5-8 is stable. Suppose 5, without loss of generality. But 3 

is dominated only by 2. 3 and 2 cannot both be unstable. Therefore 5-8 cannot be stable.

The Von Neumann-Morgenstern labeling does not work on this graph. Since it isn’t clear what is stable 

and unstable, one could imagine simply averaging the eight structures in some manner. If each struc-

ture is assigned 
1

8
 probability, mA =

59

240
, mB =

59

240
, mC =

61

480
, mD =

61

480
, mE =

61

480
, mF =

61

480
. However, now 

we have violated monotonicity. The four player unanimity game ABCD would clearly give each player 
1

4
 

of the power. If we add the minimal winning coalition ABEF, A and B lose power, 
1

4
 > 

59

240
, if the eight 

above structures are evenly averaged. 

Paper in Progress 2.nb    19



µA = µB ≥ µC = µD = µE = µF.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABCD MinWin ABCD ABCD
1

4
,

1

4
,

1

4
,

1

4
, 0, 0 5 − 8 4

2 ABCD MinWin AB, ACD, BCD AB, ACD, BCD
1

3
,

1

3
,

1

6
,

1

6
, 0, 0 3 5 − 8

3 ABEF MinWin ABEF ABEF
1

4
,

1

4
, 0, 0,

1

4
,

1

4
5 − 8 2

4 ABEF MinWin AB, AEF, BEF AB, AEF, BEF
1

3
,

1

3
, 0, 0,

1

6
,

1

6
1 5 − 8

5 CDE Blocking CDE ABCDE
1

5
,

1

5
,

1

5
,

1

5
,

1

5
, 0 2, 4 1, 3

6 CDF Blocking CDF ABCDF
1

5
,

1

5
,

1

5
,

1

5
, 0,

1

5
2, 4 1, 3

7 CEF Blocking CEF ABCEF
1

5
,

1

5
,

1

5
, 0,

1

5
,

1

5
2, 4 1, 3

8 DEF Blocking DEF ABDEF
1

5
,

1

5
, 0,

1

5
,

1

5
,

1

5
2, 4 1, 3

In this game, it is clear that there are no undominated structures. However, unlike the last game, it is 

impossible to use the Von Neumann-Morgenstern labeling ideas without running into a contradiction.

Proof:

Suppose 1 or 3 is stable. Suppose 1. Then 4, 5-8 must be unstable. 4 is dominated only by 5-8, all of 

which are now unstable. An unstable structure cannot be dominated only by unstable structures. There-

fore, 1 and 3 cannot be stable.

Now assume that 1 and 3 are unstable and 2 or 4 is stable. Assume 2, without loss of generality. Then 

1, 3, 5-8 are unstable. 5-8 are dominated by 1 and 3. 3 and 1 are unstable, but 5-8 must be dominated 

by a stable structure, a contradiction.

Suppose 1-4 are unstable and at least one of 5-8 is stable. Suppose 5, without loss of generality. But 3 

is dominated only by 2. 3 and 2 cannot both be unstable. Therefore 5-8 cannot be stable.

The Von Neumann-Morgenstern labeling does not work on this graph. Since it isn’t clear what is stable 

and unstable, one could imagine simply averaging the eight structures in some manner. If each struc-

ture is assigned 
1

8
 probability, mA =

59

240
, mB =

59

240
, mC =

61

480
, mD =

61

480
, mE =

61

480
, mF =

61

480
. However, now 

we have violated monotonicity. The four player unanimity game ABCD would clearly give each player 
1

4
 

of the power. If we add the minimal winning coalition ABEF, A and B lose power, 
1

4
 > 

59

240
, if the eight 

above structures are evenly averaged. 

Another Triangle: W
min = {ABCD, AEFG<+

µA ≥ µB = µC = µD = µE = µF = µG.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABCD MinWin ABCD ABCD
1

4
,

1

4
,

1

4
,

1

4
, 0, 0, 0 7 − 12 5, 6

2 ABCD MinWin ABC, ABD, ACD ABC, ABD, ACD
1

3
,

2

9
,

2

9
,

2

9
, 0, 0, 0 4, 7 − 12 6

3 ABCD MinWin AB, AC, AD AB, AC, AD
1

2
,

1

6
,

1

6
,

1

6
, 0, 0, 0 4, 5 7 − 12

4 ABEF MinWin AEFG AEFG
1

4
, 0, 0, 0,

1

4
,

1

4
,

1

4
7 − 12 2, 3

5 ABEF MinWin AEF, AEG, AFG AEF, AEG, AFG
1

3
, 0, 0, 0,

2

9
,

2

9
,

2

9
1, 7 − 12 3

6 ABEF MinWin AE, AF, AG AE, AF, AG
1

2
, 0, 0, 0,

1

6
,

1

6
,

1

6
1, 2 7 − 12

7 BCDE Blocking BCDE ABCDE
1

5
,

1

5
,

1

5
,

1

5
,

1

5
, 0, 0 3, 6 1, 2, 4, 5

8 BCDF Blocking BCDF ABCDF
1

5
,

1

5
,

1

5
,

1

5
, 0,

1

5
, 0 3, 6 1, 2, 4, 5

9 BCDG Blocking BCDG ABCDG
1

5
,

1

5
,

1

5
,

1

5
, 0, 0,

1

5
3, 6 1, 2, 4, 5

10 BEFG Blocking BEFG ABEFG
1

5
,

1

5
, 0, 0,

1

5
,

1

5
,

1

5
3, 6 1, 2, 4, 5

11 CEFG Blocking CEFG ACEFG
1

5
, 0,

1

5
, 0,

1

5
,

1

5
,

1

5
3, 6 1, 2, 4, 5

12 DEFG Blocking DEFG ADEFG
1

5
, 0, 0,

1

5
,

1

5
,

1

5
,

1

5
3, 6 1, 2, 4, 5
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µA ≥ µB = µC = µD = µE = µF = µG.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABCD MinWin ABCD ABCD
1

4
,

1

4
,

1

4
,

1

4
, 0, 0, 0 7 − 12 5, 6

2 ABCD MinWin ABC, ABD, ACD ABC, ABD, ACD
1

3
,

2

9
,

2

9
,

2

9
, 0, 0, 0 4, 7 − 12 6

3 ABCD MinWin AB, AC, AD AB, AC, AD
1

2
,

1

6
,

1

6
,

1

6
, 0, 0, 0 4, 5 7 − 12

4 ABEF MinWin AEFG AEFG
1

4
, 0, 0, 0,

1

4
,

1

4
,

1

4
7 − 12 2, 3

5 ABEF MinWin AEF, AEG, AFG AEF, AEG, AFG
1

3
, 0, 0, 0,

2

9
,

2

9
,

2

9
1, 7 − 12 3

6 ABEF MinWin AE, AF, AG AE, AF, AG
1

2
, 0, 0, 0,

1

6
,

1

6
,

1

6
1, 2 7 − 12

7 BCDE Blocking BCDE ABCDE
1

5
,

1

5
,

1

5
,

1

5
,

1

5
, 0, 0 3, 6 1, 2, 4, 5

8 BCDF Blocking BCDF ABCDF
1

5
,

1

5
,

1

5
,

1

5
, 0,

1

5
, 0 3, 6 1, 2, 4, 5

9 BCDG Blocking BCDG ABCDG
1

5
,

1

5
,

1

5
,

1

5
, 0, 0,

1

5
3, 6 1, 2, 4, 5

10 BEFG Blocking BEFG ABEFG
1

5
,

1

5
, 0, 0,

1

5
,

1

5
,

1

5
3, 6 1, 2, 4, 5

11 CEFG Blocking CEFG ACEFG
1

5
, 0,

1

5
, 0,

1

5
,

1

5
,

1

5
3, 6 1, 2, 4, 5

12 DEFG Blocking DEFG ADEFG
1

5
, 0, 0,

1

5
,

1

5
,

1

5
,

1

5
3, 6 1, 2, 4, 5

Another Monotone Violation: {ABCD, ABEF, ABGH<+

µA = µB ≥ µC = µD = µE = µF = µG.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABCD MinWin ABCD ABCD
1

4
,

1

4
,

1

4
,

1

4
, 0, 0, 0, 0 7 − 18 4, 6

2 ABCD MinWin AB, ACD, BCD AB, ACD, BCD
1

3
,

1

3
,

1

6
,

1

6
, 0, 0, 0, 0 3, 5 −

3 ABEF MinWin ABEF ABEF
1

4
,

1

4
, 0, 0,

1

4
,

1

4
, 0, 0 7 − 18 2, 6

4 ABEF MinWin AB, AEF, BEF AB, AEF, BEF
1

3
,

1

3
, 0, 0,

1

6
,

1

6
, 0, 0 1, 5 −

5 ABGH MinWin ABGH ABGH
1

4
,

1

4
, 0, 0, 0, 0,

1

4
,

1

4
7 − 18 2, 4

6 ABGH MinWin AB, AGH, BGH AB, AGH, BGH
1

3
,

1

3
, 0, 0, 0, 0,

1

6
,

1

6
1, 3 −

7 CDEG Blocking CDEG ABCDEG
1

6
,

1

6
,

1

6
,

1

6
,

1

6
, 0,

1

6
, 0 − 1, 3, 5

8 CDEH Blocking CDEH ABCDEH
1

6
,

1

6
,

1

6
,

1

6
,

1

6
, 0, 0,

1

6
− 1, 3, 5

9 CDFG Blocking CDFG ABCDFG
1

6
,

1

6
,

1

6
,

1

6
, 0,

1

6
,

1

6
, 0 − 1, 3, 5

10 CDFH Blocking CDFH ABCDFH
1

6
,

1

6
,

1

6
,

1

6
, 0,

1

6
, 0,

1

6
− 1, 3, 5

11 CEFG Blocking CEFG ABCEFG
1

6
,

1

6
,

1

6
, 0,

1

6
,

1

6
,

1

6
, 0 − 1, 3, 5

12 CEFH Blocking CEFH ABCEFH
1

6
,

1

6
,

1

6
, 0,

1

6
,

1

6
, 0,

1

6
− 1, 3, 5

13 DEFG Blocking DEFG ABDEFG
1

6
,

1

6
, 0,

1

6
,

1

6
,

1

6
,

1

6
, 0 − 1, 3, 5

14 DEFH Blocking DEFH ABDEFH
1

6
,

1

6
, 0,

1

6
,

1

6
,

1

6
, 0,

1

6
− 1, 3, 5

15 CEGH Blocking CEGH ABCEGH
1

6
,

1

6
,

1

6
, 0,

1

6
, 0,

1

6
,

1

6
− 1, 3, 5

16 CFGH Blocking CFGH ABCFGH
1

6
,

1

6
,

1

6
, 0, 0,

1

6
,

1

6
,

1

6
− 1, 3, 5

17 DEGH Blocking DEGH ABDEGH
1

6
,

1

6
, 0,

1

6
,

1

6
, 0,

1

6
,

1

6
− 1, 3, 5

18 DFGH Blocking DFGH ABDFGH
1

6
,

1

6
, 0,

1

6
, 0,

1

6
,

1

6
,

1

6
− 1, 3, 5

Here, 2, 4, 6 are stable because they are undominated. So, 1, 3, and 5 are unstable. But then 7-18 are 

stable. However, A and B get only 
1

5
 of the power if alll these stable structures are weighted equally and 

then averaged. This averaging scheme violates monotonicity, because a four player unanimity game 

gives A and B 
1

4
. A and B have added ABEF and ABGH as new minimal winning coalitions. If anything, 

their power should increase.
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µA = µB ≥ µC = µD = µE = µF = µG.

ð Bloc Type Bloc MWCs New full MWCs Powers Dominates Dominated By

1 ABCD MinWin ABCD ABCD
1

4
,

1

4
,

1

4
,

1

4
, 0, 0, 0, 0 7 − 18 4, 6

2 ABCD MinWin AB, ACD, BCD AB, ACD, BCD
1

3
,

1

3
,

1

6
,

1

6
, 0, 0, 0, 0 3, 5 −

3 ABEF MinWin ABEF ABEF
1

4
,

1

4
, 0, 0,

1

4
,

1

4
, 0, 0 7 − 18 2, 6

4 ABEF MinWin AB, AEF, BEF AB, AEF, BEF
1

3
,

1

3
, 0, 0,

1

6
,

1

6
, 0, 0 1, 5 −

5 ABGH MinWin ABGH ABGH
1

4
,

1

4
, 0, 0, 0, 0,

1

4
,

1

4
7 − 18 2, 4

6 ABGH MinWin AB, AGH, BGH AB, AGH, BGH
1

3
,

1

3
, 0, 0, 0, 0,

1

6
,

1

6
1, 3 −

7 CDEG Blocking CDEG ABCDEG
1

6
,

1

6
,

1

6
,

1

6
,

1

6
, 0,

1

6
, 0 − 1, 3, 5

8 CDEH Blocking CDEH ABCDEH
1

6
,

1

6
,

1

6
,

1

6
,

1

6
, 0, 0,

1

6
− 1, 3, 5

9 CDFG Blocking CDFG ABCDFG
1

6
,

1

6
,

1

6
,

1

6
, 0,

1

6
,

1

6
, 0 − 1, 3, 5

10 CDFH Blocking CDFH ABCDFH
1

6
,

1

6
,

1

6
,

1

6
, 0,

1

6
, 0,

1

6
− 1, 3, 5

11 CEFG Blocking CEFG ABCEFG
1

6
,

1

6
,

1

6
, 0,

1

6
,

1

6
,

1

6
, 0 − 1, 3, 5

12 CEFH Blocking CEFH ABCEFH
1

6
,

1

6
,

1

6
, 0,

1

6
,

1

6
, 0,

1

6
− 1, 3, 5

13 DEFG Blocking DEFG ABDEFG
1

6
,

1

6
, 0,

1

6
,

1

6
,

1

6
,

1

6
, 0 − 1, 3, 5

14 DEFH Blocking DEFH ABDEFH
1

6
,

1

6
, 0,

1

6
,

1

6
,

1

6
, 0,

1

6
− 1, 3, 5

15 CEGH Blocking CEGH ABCEGH
1

6
,

1

6
,

1

6
, 0,

1

6
, 0,

1

6
,

1

6
− 1, 3, 5

16 CFGH Blocking CFGH ABCFGH
1

6
,

1

6
,

1

6
, 0, 0,

1

6
,

1

6
,

1

6
− 1, 3, 5

17 DEGH Blocking DEGH ABDEGH
1

6
,

1

6
, 0,

1

6
,

1

6
, 0,

1

6
,

1

6
− 1, 3, 5

18 DFGH Blocking DFGH ABDFGH
1

6
,

1

6
, 0,

1

6
, 0,

1

6
,

1

6
,

1

6
− 1, 3, 5

Here, 2, 4, 6 are stable because they are undominated. So, 1, 3, and 5 are unstable. But then 7-18 are 

stable. However, A and B get only 
1

5
 of the power if alll these stable structures are weighted equally and 

then averaged. This averaging scheme violates monotonicity, because a four player unanimity game 

gives A and B 
1

4
. A and B have added ABEF and ABGH as new minimal winning coalitions. If anything, 

their power should increase.

6. Future Work

At this juncture, much remains up in the air about the Machiavelli Index. There is plenty of room for 

future work. Since the current definition of the Machiavelli Power Index violates monotonicity, one 

approach might be to make adjustments to it in the hopes of satisfying and proving monotonicity. Our 

definition of stability may need to be redefined to fit games like ABCD, ABEF. Additionally, it may be 

true that our current definition allows for multiple stable sets. It is not clear how those should be aver-

aged should that situation arise. Or perhaps, rather than weighting all stable structures equally in an 

average, perhaps a reasonable weighting scheme can be discovered. 

Non-minimal winning blocs and blocking blocs that allow other blocking blocs could be added to the 

problematic games from the previous section. Along a similar vein, blocs with dummies should be 

considered (this has not been done for any number of players). Bloc structures that have power inconsis-

tencies, too, should be considered. Our hope and our intuition is that these structures are always 

unstable and should not factor into the average at all, however, this is far from proven. 

A final idea for future work is to calculate games with more than four players. To contemplate any game 

with minimal winning coalitions of five or more players, one needs to know all possible power divisibility 

schemes for that many players.
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