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Perfect Numbers and Perfect Squares

Let n, m, a, b, c, d be integers and p, q, r, s be prime numbers. 

Conjecture: Perfect squares are not prefect numbers. 

In mathematical form, for any perfect number m = 
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Definitions: 

Perfect Square: A number m is said to be a perfect square if it can be written as 
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; 225 is therefore a perfect square.

Perfect Number: A number n is said to be perfect number if ( (n) = 2n. In other words, n is perfect if the sum of its proper divisors (those divisors that are strictly less than n) is equal to n. For example, 28 is a perfect number because ( (28) = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2 * 28. Or because the sum of the proper divisors of 28 is 1 + 2 + 4 + 7 + 14 = 28.  27 is not a perfect number because ( (27) = 1 + 3+ 9 + 27 = 40 ( 2 * 27. In other words, because the sum of the proper divisors of 27 is 1 + 3 + 9 ( 27.  

In addition, if n = 
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 = (1 + 2 + 4 + 8) (1 + 3) = 56 = 2 * 28. Therefore, 28 is a perfect number. 

Proof:

Step 1: A prime number is not a perfect number. 

The sum of the divisors of a prime number p (i.e. 1 and itself) is not equal to 2*p. In mathematical form, ( (p) = (1 + p) (  2* p (  p + p unless p = 1. But in definition of a prime number, we take 1 as non-prime number. 

Property 1: A prime number is not a perfect number. 

Step 2: Let's consider the case of the perfect squares of a single prime number: 4 and 9. 

( (4) = 1 + 2 + 4 ( 2 * 4 ( 4 + 4 ( 8

( (9) = 1 + 3+ 9 ( 2 * 9 ( 9 + 9 ( 18

Generally, we can conclude that ( (
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 because the underlined parts, (1 + p) ( p* p when p is a prime number. 

Property 2: The perfect square of a prime number is not a perfect number. 

Step 3: Let's consider the case of a perfect square number that is the square of a power of a prime number.  ( (64) = ( (
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We will prove it by contradiction too.

For a number in order to be a perfect number, the sum of its proper divisors (those divisors that are strictly less than n) is equal to n. This in turn means that ((
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Therefore, 
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Property 3: A perfect square number that is the square of a power of a prime number is not a perfect number.   

Step: 4: Is the power of a prime number a perfect number?

We will prove it by contradiction.

For a number in order to be a perfect number, the sum of its proper divisors (those divisors that are strictly less than n) is equal to n. This in turn means that ((
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Property 4: (
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Step: 5: Let's consider the case of the perfect square of number that is a product of two prime numbers. 

( (2*3)^2 = (1 + 2 + 4) (1 + 3+ 9 )= 91 ( 2* 36

In general, if n = 
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We will prove it by contradiction.

Lets' assume that ( (
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If p = 2, the only even prime number, 1 + p + 
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When p is a prime number other than 2, 1 + p + 
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Hence, n is not a perfect number.

Property 5: The perfect square of number that is a product of two prime numbers is not a perfect number. 

Step 6: Now we will consider the most general case of all perfect squares. 

A perfect square m can be written as 
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We will prove it by contradiction. Let m be a perfect number. ((m) = 2 *
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For a prime number p of an even power 2a, the number of its divisors = 2a +1, which implies that when we disregard 1, there will be 2a even number of divisors. Without losing the generality, we will make p and a represent all 
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When p is a prime number other than 2, (
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Hence, we can conclude that whether p is an even number or odd number, ((m) = (
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 ) is the product of odd numbers and so ((m) is an odd number. This contradicts the previously stated fact that ((m) = 2 *
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So, m is not a perfect number. 

Now, we can safely conclude that perfect squares are not perfect numbers. 

Attached to Step 4. 

Conjecture: ( (
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Recognition: This paper is indebted to a problem proposed by Carl Pomerance, University of Georgia. in page 6036 of June-Dec 1975 "Mathematical Monthly" and another problem proposed by P. Richard Herr, University Park, Pennsylvania in page 1026 of 1974 "Mathematical Monthly".
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