REVISED ONGiksAL

The Shapley Value for Partition Function Form Games
Maria Theoharidis

July 16, 1993

Partition function form games were first introduced in Lucas
and Thrall in 1963 as a generalized form of characteristic
function form games. Both R.B. Myerson and E.M. Bolger have
defined values on partition function form games. In this paper
an extension of the Shapley value is sought which will satisfy
linearity, efficiency, symmetry and dummy. Different axioms are
then incorporated to place bounds on the various remaining
parameters.

The following background information, along with 12 axioms
and 7 definitions, is key to the paper.

Background Information:

N={1,2,...,n) is the set of players in a n-person game.

CL = {S | ScN, S#p} is the set of coalitions of N.

PT(S) = {{$,...,5") | 8 U ... U S" =8, V] S =#p, Vk SnS=p if
k#j} is the set of partitions of S.

ECL = {(S,P) | SECL, PEPT(N-S) } is the set of embedded
coalitions, that is, the coalition S is faced with the players in
N-S grouped by the partition P.

An n-player game in partition function form is any W € R*™,
that is, W is a function from embedded coalitions to real
numbers. We may interpret W(S;P) to be the amount S would
receive if the players in N-S cooperated according to the
partition P.

A value is a function & from some class of n-player games to

R", the set of allocations. That is, &,(W) is the allocation to



player i in the game W.

A game is superadditive if any combination of two coalitions
has a higher value than the two coalitions alone: W(S;Pu{T}) +
W(T;Pu{S}) £ W(SUT;P) for all disjoint coalitions S and T and

partitions (S,T}uUP of N. A game is coalition monotonic if adding

players to a coalition, without moving other players, raises its
worth: W(S;P) < W(T; {R-T: REP}), for all ScT. A game is
partition monotonic if a coalition’s worth is higher the less
cooperation there is among the players outside the coalition:
W(S;P) £ W(S;Q) whenever Q is a refinement of P, i.e., REQ = JSEP
such that RcS.

We also define a partial order on embedded coalitions in the
following manner: (T;Q) = (S;P) if S ¢ T and Q is a refinement of
{R-S: REP}. A unanimity game for (S;P) is the game W defined by
W(T;Q) = 1 if (T:Q) =2 (S;P) and W(T;Q) = 0 otherwise.

Axioms and Definitions:

For the following axioms and definitions, let S,T c¢N,

P € PT(N-S) and Q € PT(N-T), and W and V be games on N. The
definitions are given as conditions which hold for all games in
some class G. The reference to the class G has been omitted from
each definition.

Definition 1: Suppose w:N-N is any permutation of the set of

players. Then 7 acts as a permutation on CL and ECL in the
following way:
7(8) = {w(3j) | JES}, VSECL, and

(8%, {8%,...,8%) = (n(5°), {7(8)),...,7(5")}),



V(8% (8,4+4+;5%}) € BCL.
Symmetry: the payoff to a player does not depend on its name.
Thus, VJj €N and for every game W,
3,(W) = &,4, (TOW) where wOw is the game that results from
permutating the players in game W.
Linearity: #(aW+bV)=a®(W)+b®(V) for all real a,b€ R.
Efficiency: &, (W) + ... + &, (W) = W(N;p).
Definition 2: Player j is a dummy player if the value of any
coalition S containing j does not change when j leaves it:
W(S:P)= W(S-{]J):Q) for each (S;P) € ECL such that j€S and |S5|z2,
where Q is the partition that results from adding j to one of the
members of Pu{o} and W({i}:P) = 0 for P € PT(N-{1i})
Dummy Axiom: If a player does not contribute anything to any
coalition, then that player should be allocated nothing. If j is
a dummy in game W, then &,(W)=0.

Definition 3: Given WER™™ and SECL, S is a carrier of W when the

members in S are the only part of the coalition that makes any
difference in the value. S is a carrier iff W(T,;Q,) = W(T,;Q,)
whenever T,nS = T,nS, Q,|S = Q,|S, and Q,|(N-8) = Q,|(N-8), where
QIS = {RnNS: REQ and RNS#gp)}
Carrier Axiom: V(S;P) € ECL, if 8 is a carrier of W, then

Zoes®n (W) = W(N:g).
Since only the players in S give value to a coalition, only the
members in S are allocated something.
Definitions 1 and the carrier axiom are from Myerson (1977).

Definition 5: The dummy extension of W is the game W* defined on



the player set N y {d} by WY(S;P) = W(S-{d};{R-{d}:R€P}) V ECLS
(S:P). Dummy players are added to coalitions and partitions.
Dummy Independence: Vd ¢N, and Vi €N, &,(W') = &,(W). Adding
dummy players does not affect the allocations to the other
players.

Definition 5 and the dummy independence axiom are from Bolger
(1987).

Group Monotonicity: if W(S;P)2V(S;P) and W(T;Q) = V(T:Q),
Y(T:Q) # (S;P), then &,(W)2%,(V), Vi €S.

If two games differ only in the values of a coalition S, then the
members of S get a higher allocation in the game where their
value is higher.

Complementary Group Monotonicity: if W(S;P)2V(S;P) and

W(T:;Q) = V(T:Q), V(T:;Q) #(5;P), then &, (W)<&,(V), Vi ¢S. 1In two
games that differ only in the value of S, the players not in S
will be allocated less in the game where S has a larger value.

Definition 6: In a game W, the marginals for player i are the

quantities W(S;P)-W(S-{i}:Q), where i € S and Q is identical to P
except that i has been added to one of the members of Pug.

Strong Monotonicity: if each marginal for player i on game W is
greater than or equal to the corresponding marginal for player i
on game V, then &,(W)2%,(V).

Marginalist Axiom: if the corresponding marginals for player i
are the same on two games W and V, then the allocation &, should
be the same for both games, &, (W) = &,(V).

Strong Marginalist: let i €N. If for each partition Q, where



TE€Q, i €T and the summations over all partitions P of N that
can be obtained from Q by moving i from T into another, possibly
empty, set we have S[W(T;Q)-W(T-{i};P)] = S[V(T;Q)-V(T-{i};:P)],

then &,(W) = &,(V).

Proposition 1. The value & is linear iff for some constant

vector beR"™ X ECL

B, (W) =2(S;P)Em b(i,8;P)yw(S;P)

Proof. The formula is clearly linear. Conversely, suppose &

is linear. Define V*® by:
VEP(S;P) = 1

VEF(T; Q) 0 for (T;Q)#(S;P)

Clearly, {(V&*

(S:P) € ECL}) forms a basis for R** (comparable to

the standard basis) 1In fact, W € R*™ implies that

x . 5.P
W'E(S;P)escz. WS Ey¥

By linearity,

B (Y=Y o oo V(ST PI R (VEF)

So we choose b(S;P) = &,(V*®) and the proof is complete.

Proposition 2. The value & is linear and satisfies the

dummy axiom iff



B (W) = 3 o prescot) dorerioy € (11 SiPiR) [W(S; P) -w(s-{i}; P[i,R])]

* Epeprm_u}, C(i ’ {i};P; G)W({i};}?)

for some constants ¢ where ECL(i) is all (S:;P) such that i€S and
|S|z2 and P[i,R] is the partition P={R}u{Ru{i}).

Proof. & obviously satisfies the dummy axiom since the
payoff to a player depends only on the marginals, which will be 0
when the player is a dummy.

Conversely, let ScN,|S|22, and PEPT(N-5). Define W such
that W(S;P)= W(S-{(i};P[i,R]) = 1 V REPuUp, and 0 otherwise. Then

player i is a dummy playver. We already have:

8 () =Y . pyeney P (L1 SiPYW(S;P)
a reordering of terms yields the expression

B (W) = 3 o peaonyy [P SiP)W(S;P) +

Eaewm} b(i,s-i};P[i,R])w(S-{i};P[i,R])]

= Y s menc iy [P(E/SIPY + Do B(E,S-EPLL,R])W(S;P) +

ERGM,} -b(i,8-{i};P[i,R1)[w(S;P)-w(S-{i};P[i,R]1)]]

Using the W defined above, this value becomes



3, (W) =b(i,s;p)=«EREMb(i,s—{i};P[i,R])

and since i is a dummy,

b(i,8,P)=-}, ., P(1,8-1,P[1,R])

Renaming -b(i,S-{i};P[i,R]) with c(i:;S;P;R) for |S|2@ and
b(i,{i}:P with c(i,{i}:P;p) we have shown that linearity and
dummy imply the expression stated in the proposition.

Since this formula depends ohly on the marginals of W, we have
also proved that linearity and dummy imply marginalism.

Let |S| denote the size of S and |P| denote the sizes of the
members of P, that is |P| is the multiset ( |R|:REP}. For
example, if P = { {1,4},{2,3,6},{5,7} } then |P|= {2,3,2}.
Proposition 3. If & is satisfies linearity dummy, and symmetry,

then

B () = Y o mescnct) Dmervio @ CIS171P17 [R|) [w(S; P)-w(S-1;P[4,R])]

¢ Y rerr-my 91 P15 0)w({i); P)

Proof. Define m to be a permutation such that #(i,) = 1,

S;-1,,Py[110R,]

. 8y-1,.P-1[1,,R =
-c(dy,38,7PiRy) =0, (v Ry e nw )=c(i,;5,;P,;R-2)

and 7(5,) = S,. Then



Thus the coefficients depend only on the sizes |S|, |P|, |R|. So
the c¢’s can be replaced with coefficients of the form
ac|s| |y [R]) -

The constants d have an interpretation as the power of
"almost dummies" in certain simple games. Let |S| =s, |P| = p,
and |R| = r. Define the game W by W(T:Q) = 1 whenever (T:Q)
(S={i}; P[i,R’]) for some R’€EP-{R}u{g}, and W(T;Q) = 0 otherwise.
Then player i is a dummy except in moving from 8 to R in the
embedded coalition (S;P), and so it can be easily seen that the
payoff to player i is d(s;:;p:r).

Efficiency does not change this value, it simply puts a

restriction on the coefficients as seen in the following theorem.

Theorem. If & satisfies linearity, dummy, symmetry and
efficiency, then & is equal to the value in proposition three

where the constants d satisfy the following recursion relation:

d(n;0;0)=-%

d(s;pi0)=Y, [ Zd(s+1;p-le-1)) -d(sipir)]

Proof. Suppose (S;P)#=(N:g), ]§|22. Consider the game where

w(S;P) = 1 and w(S;P) = 0 otherwise. By efficiency,

0=y, & 0N=Y, Y . d(S[i1Pl; R])+Y, s -d(|8]+1; IP-1); [R-1])

Since the term inside the first sum does not depend on i and for



each REP, the term in the second sum does not depend on i,

=181Y e, ST 1215 IR -Y, 5 IRI(IS]+1; 1PI-{R PUKIR-1 )% R|-1)

Now suppose s = |S|, r = |R| and p = |P|. Then the above

expression implies that

leﬁibd(s;p;r)=§lxprd(s+1;p—ﬁﬂﬂr—lhrul)

or

d(s;p;0= nw-gd(s+1;p~hﬂﬁr—1b—d(s;p;r)

When |S| = 1, by efficiency we obtain:

0=d(1;|Pl;0)+Y - -d(2;IP-1il; |R-1|)

Simplifying the above expression in a manner analogous to the

previous case we obtain:

<:i(1;p;0)=§:RGP rd(2;p-{rilir-1}

It is also possible to prove these characteristics on the

class of superadditive, partition and coalition monotonic games



by replacing the games used in the above proof with their
superadditive, partition and coalition monotonic covers and
inducting on the ECL’s starting with (N;g) and in the direction
of ».

Thus the payoff to player 1 in a three player game using
this class of values is:

¢, (W) = d(3:0;0) [W(123;9) - W(23:;1)]

+ d(2;1;0) [W(12;3) - W(2;1,3)]
+ d(2;1;1) [W(12:;3) - W(2;13)]
+ d(2:;1;0) [W(13:;2) - W(3:;1,2)]
+ d(2;1;1) [W(13;2) - W(3;12)]

4

d(1;1,1;0) W(1;2,3) + d(1;2:;0) W(1:23).
Putting in the values of the d’s the payoff becomes:
d(3;0;0)=(1/3) = (1/3)[W(123,9)-W(23;1)]+
2[A(2;1;0)+d(2:171)1=d(3;0;0) = (1/6 - u,)[W(12;3)-W(2:;1,3)]+
My, [W(12;3)-W(2:;13)]1+
(1/6 = u,)[W(13;2)-W(3;1,2)]+
By [W(13;2)-W(3;12)]+
d(1;1,1;0)=2d4(2;1;0) = (1/3 - 2u,) W(1;2,3)+
d(1:;2;0)=2d(2:1:;1) = 2u, W(1:;23).
| Using the recursion relation, the payoff to player 1 in a
four player game would appear as follows:
Equation: 3, (W)=
d(4:0;0)=(1/4) = (1/4)[W(1234;9)-W(234:;1) 1+
3[d(3:;1:;0)+d(3:;1:;1)]1=d(4:;0:0) = (1/12-4,)[W(123;4)-W(23;1,4)1+

B, [W(123;4)-W(23;14)]+

10



(1/12-p,)[W(124;3)-W(24:1,3) ]+
M, [W(124;3)-W(24;13) ]+
(1/12-4,) [W(134;2)-W(34;1,2) 1+
B, [W(134;2)-W(34;12) ]+
2[d(2;2;2)+d(2:;2:0)1=2d(3:;1:1) = (py—=p, ) [W(12:;34)-W(2:34,1) ]+
P [W(12;34)-W(2;134)]+
(By=p) [W(13;24)-W(3;24,1) ]+
B, [W(13;24)-W(3:;124) ]+
(Wi-py) [W(14;23)-W(4;23,1) ]+
B [W(14:23)-W(4:;123) ]+
2[2d(2;1,1;1)+d(2;1,1;0)1=2d(3;1;0) =
(1/12~-p,-2p,) [W(12;3,4)-W(2;1,3,4) 1+
By [W(12;3,4)-W(2:;13,4)]+
By [W(12:;3,4)-W(2;14,3)]1+
(1/12-p,~24,) [W(13;2,4)-W(3;1,2,4) ]+
My [W(13;2,4)-W(3;12,4)]1+
By [W(13;2,4)-W(3;14,2) ]+
(1/12~-p,~2u,) [W(14;2,3)-W(4;1,2,3) 1+
By [W(14:;2,3)-W(4;12,3) ]+
My [W(14;2,3)-W(4:;13,2)]1+
d(1:;3:;0)=3d(2:;2;2) - 3u, [W(1;234)]+
d(1:2,1;0)=d(27;2;0)+2d(27;1,1;1) = (p,~p+21,)[W(1:;23,4)+W(1;24,3)
| +W(1:34,2) ]+
d(1;1,1,1;0)=3d4(2:;1,1:0) = (1/4-3u,-6u,)[W(1:;2,3,4)].
Where a bound on the u’s is obtained by requiring that the

coefficients be positive. This is not unreasonable since the

11



coefficients are multiplying marginals and the higher the
marginals of a player the more that player should receive in the

final allocation
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