Math 1031, Self-Evaluation Exercise 1: Solutions October 28, 2009

Name: (Amy's Solutions)

Discussion Section: NA

Discussion TA: NA

This exercise is for your practise. There are four open-ended problems. Give yourself 20 minutes to complete the exercise, and see how you do.

- 1. Consider f(x) = 2|x 1| + 3
 - a.) What basic curve can you use to help you graph this function?

$$y = |x|$$

b.) Graph the basic curve in (a).

The graph looks like a "V". It goes through the points (0,0), (-1,1), and (1,1). (Maybe I'll figure out how to insert a picture here??)

c.) Graph f(x).

To get this graph from the graph of y = |x|, we will do a vertical stretch by a factor of 2, then translate *right* by 1 and *up* by 3. So the three points given above go to:

This still has a "V" shape, but it is narrower than the graph of y = |x| and it is shifted. (Picture later?!)

2. If $f(x) = x^2 - 6$, $x \ge 0$

a.) Find the inverse function $f^{-1}(x)$.

We let y = f(x) then switch x and y:

$$y = x^2 - 6, \quad x \ge 0$$

 $x = y^2 - 6, \quad y \ge 0$

Now solve for y:

$$\begin{array}{rcl} x+6 &=& y^2, \quad y \geq 0 \\ y &=& \pm \sqrt{x+6}, \quad y \geq 0 \\ y &=& \sqrt{x+6} \end{array}$$

So $f^{-1}(x) = \sqrt{x+6}$. The domain is $x \ge 6$.

b.) Verify that $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$.

First, look at
$$(f \circ f^{-1})(x)$$
 on the domain of f^{-1} , i.e. for $x \ge 6$:

$$(f \circ f^{-1})(x) = (\sqrt{x+6})^2 - 6 = (x+6) - 6 = x$$

Second, look at $(f^{-1} \circ f)(x)$ on the domain of f, i.e. for $x \ge 0$:

$$(f^{-1} \circ f)(x) = \sqrt{(x^2 - 6) + 6} = \sqrt{x^2} = x$$

c.) Graph f(x) and $f^{-1}(x)$ on the same set of axes.

To graph $f(x) = x^2 - 6$, $x \ge 0$, first think about $y = x^2 - 6$ and then think about the domain restriction $x \ge 0$. Well, $y = x^2 - 6$ is a parabola: take the basic parabola and shift down by 6.

(0,0)	\longrightarrow	(0, -6)
(1, 1)	\longrightarrow	(1, -5)
(2, 4)	\longrightarrow	(2, -2)
(3, 9)	\longrightarrow	(3,3)

The domain restriction $x \ge 0$ means that the left half of the parabola is missing.

To graph $f^{-1}(x) = \sqrt{x-6}$, transform the basic square root $y = \sqrt{x}$ by shifting *left* by 6.

(0,0)	\longrightarrow	(-6, 0)
(1, 1)	\longrightarrow	(-5, 1)
(4, 2)	\longrightarrow	(-2, 2)
(9,3)	\longrightarrow	(3,3)

When you graph both functions on the same set of axes, you will see that the two graphs are symmetric across the line y = x.

(Picture later?!)

3. Find two numbers whose sum is 30 and whose product is a maximum.

We want to maximize the *product* in terms of the numbers. Call the product P and the two numbers x and y. We want to write P as a function of x (or as a function of y.) Well,

$$P = xy$$

To eliminate the y, we use the fact that the sum is

x + y = 30

which means that y = 30 - x. So the product is

$$P = P(x) = x(30 - x) = 30x - x^{2}$$

So P is a quadratic function, and its graph is a parabola pointing downward. That means that P will have a maximum at the vertex,

$$x = -\frac{b}{2a} = -\frac{30}{2(-1)} = 15$$

To finish the problem, we have to make sure we answer the original question: "Find two numbers \dots " So we need to find y as well,

$$y = 30 - x = 30 - 15 = 15$$

So the product is a maximum when the two numbers are both equal to 15.

4. Graph $f(x) = -x^3 - x^2 + 6x$.

Put f(x) in factored form:

$$f(x) = -x(x^{2} + x + 6) = -x(x - 2)(x + 3)$$

The zeros (x-intercepts) of f(x) are at x = -3, 0, 2. This breaks up the number line into four intervals:

 $(-\infty, -3), (-3, 0), (0, 2), (2, \infty)$

For each interval, we use a test point to see whether f(x) is positive or negative on that interval:

Interval	Test point	Value of f	Pos/neg
$(-\infty, -3)$	x = -4	f(-4) = 4(-6)(-1) = 24	+
(-3,0)	x = -1	f(-1) = 1(-3)(2) = -6	-
(0,2)	x = 1	f(1) = (-1)(-1)(4) = 4	+
$(2,\infty)$	x = 3	f(3) = (-3)(1)(6) = -18	-

Now graph the cubic using these test points ... (it goes "down, up, down") ...

(Picture later?!)