Math 1031, Self-Evaluation Exercise 1: Solutions

October 28, 2009

Name: (Amy's Solutions)

Discussion Section: $N A$

Discussion TA: $N A$

This exercise is for your practise. There are four open-ended problems. Give yourself 20 minutes to complete the exercise, and see how you do.

1. Consider $f(x)=2|x-1|+3$
a.) What basic curve can you use to help you graph this function?

$$
y=|x|
$$

b.) Graph the basic curve in (a).

The graph looks like a "V". It goes through the points $(0,0),(-1,1)$, and $(1,1)$. (Maybe I'll figure out how to insert a picture here??)
c.) Graph $f(x)$.

To get this graph from the graph of $y=|x|$, we will do a vertical stretch by a factor of 2 , then translate right by 1 and $u p$ by 3 . So the three points given above go to:

$$
\begin{aligned}
(0,0) & \longrightarrow(1,3) \\
(-1,1) & \longrightarrow(0,5) \\
(1,1) & \longrightarrow(2,5)
\end{aligned}
$$

This still has a "V" shape, but it is narrower than the graph of $y=|x|$ and it is shifted. (Picture later?!)
2. If $f(x)=x^{2}-6, x \geq 0$
a.) Find the inverse function $f^{-1}(x)$.

We let $y=f(x)$ then switch x and y :

$$
\begin{aligned}
& y=x^{2}-6, \quad x \geq 0 \\
& x=y^{2}-6, \quad y \geq 0
\end{aligned}
$$

Now solve for y :

$$
\begin{aligned}
x+6 & =y^{2}, \quad y \geq 0 \\
y & = \pm \sqrt{x+6}, \quad y \geq 0 \\
y & =\sqrt{x+6}
\end{aligned}
$$

So $f^{-1}(x)=\sqrt{x+6}$. The domain is $x \geq 6$.
b.) Verify that $\left(f \circ f^{-1}\right)(x)=x$ and $\left(f^{-1} \circ f\right)(x)=x$.

First, look at $\left(f \circ f^{-1}\right)(x)$ on the domain of f^{-1}, i.e. for $x \geq 6$:

$$
\left(f \circ f^{-1}\right)(x)=(\sqrt{x+6})^{2}-6=(x+6)-6=x
$$

Second, look at $\left(f^{-1} \circ f\right)(x)$ on the domain of f, i.e. for $x \geq 0$:

$$
\left(f^{-1} \circ f\right)(x)=\sqrt{\left(x^{2}-6\right)+6}=\sqrt{x^{2}}=x
$$

c.) Graph $f(x)$ and $f^{-1}(x)$ on the same set of axes.

To graph $f(x)=x^{2}-6, x \geq 0$, first think about $y=x^{2}-6$ and then think about the domain restriction $x \geq 0$. Well, $y=x^{2}-6$ is a parabola: take the basic parabola and shift down by 6 .

$$
\begin{array}{ll}
(0,0) & \longrightarrow \\
(0,-6) \\
(1,1) & \longrightarrow \\
(1,-5) \\
(2,4) & \longrightarrow \\
(3,9) & \longrightarrow(2,-2) \\
(3,3)
\end{array}
$$

The domain restriction $x \geq 0$ means that the left half of the parabola is missing.
To graph $f^{-1}(x)=\sqrt{x-6}$, transform the basic square root $y=\sqrt{x}$ by shifting left by 6 .

$$
\begin{array}{ll}
(0,0) & \longrightarrow \\
(-6,0) \\
(1,1) & \longrightarrow \\
(-5,1) \\
(4,2) & \longrightarrow \\
(9,3) & \longrightarrow-2,2) \\
(3,3)
\end{array}
$$

When you graph both functions on the same set of axes, you will see that the two graphs are symmetric across the line $y=x$.
(Picture later?!)
3. Find two numbers whose sum is 30 and whose product is a maximum.

We want to maximize the product in terms of the numbers. Call the product P and the two numbers x and y. We want to write P as a function of x (or as a function of y.) Well,

$$
P=x y
$$

To eliminate the y, we use the fact that the sum is

$$
x+y=30
$$

which means that $y=30-x$. So the product is

$$
P=P(x)=x(30-x)=30 x-x^{2}
$$

So P is a quadratic function, and its graph is a parabola pointing downward. That means that P will have a maximum at the vertex,

$$
x=-\frac{b}{2 a}=-\frac{30}{2(-1)}=15
$$

To finish the problem, we have to make sure we answer the original question: "Find two numbers..." So we need to find y as well,

$$
y=30-x=30-15=15
$$

So the product is a maximum when the two numbers are both equal to 15 .
4. Graph $f(x)=-x^{3}-x^{2}+6 x$.

Put $f(x)$ in factored form:

$$
f(x)=-x\left(x^{2}+x+6\right)=-x(x-2)(x+3)
$$

The zeros (x-intercepts) of $f(x)$ are at $x=-3,0,2$. This breaks up the number line into four intervals:

$$
(-\infty,-3),(-3,0),(0,2),(2, \infty)
$$

For each interval, we use a test point to see whether $f(x)$ is positive or negative on that interval:

Interval	Test point	Value of f	Pos/neg
$(-\infty,-3)$	$x=-4$	$f(-4)=4(-6)(-1)=24$	+
$(-3,0)$	$x=-1$	$f(-1)=1(-3)(2)=-6$	-
$(0,2)$	$x=1$	$f(1)=(-1)(-1)(4)=4$	+
$(2, \infty)$	$x=3$	$f(3)=(-3)(1)(6)=-18$	-

Now graph the cubic using these test points ... (it goes "down, up, down") ...
(Picture later?!)

