Math 1031, Self-Evaluation Exercise 2: Solutions

November 2, 2009

Name: (Amy's Solutions)

Discussion Section: $N A$

Discussion TA: $N A$

This exercise is for your practise. There are four open-ended problems. Give yourself 20 minutes to complete the exercise, and see how you do.

1. Consider $f(x)=3^{1-x}$
a.) What basic exponential curve can you use to help you graph this function?

$$
y=3^{-x}
$$

b.) Graph the basic curve in (a).

The curve is exponential decay. It goes through $(0,1)$ (like every exponential.) And it goes through $(-1,3)$ and $\left(1, \frac{1}{3}\right)$.

See hand-out for picture.
c.) Graph $f(x)$.

Rewrite $f(x)$ to make the transformation clearer:

$$
f(x)=3^{-(x-1)}
$$

So we are transforming the basic curve $y=3^{-x}$ by shifting to the right by 1 .

$$
\begin{aligned}
(0,1) & \longrightarrow(1,1) \\
(-1,3) & \longrightarrow(0,3) \\
(1,3) & \longrightarrow(2,3)
\end{aligned}
$$

See hand-out for picture
2. Evaluate the expression:

$$
\log _{3}\left(\frac{\sqrt[4]{27}}{3}\right)
$$

We rewrite this using the properties of logarithms:

$$
\begin{aligned}
\log _{3}\left(\frac{\sqrt[4]{27}}{3}\right) & =\log _{3}(\sqrt[4]{27})-\log _{3}(3) \\
& =\frac{1}{4} \log _{3}(27)-\log _{3}(3) \\
& =\frac{1}{4} \log _{3}\left(3^{3}\right)-\log _{3}\left(3^{1}\right) \\
& =\frac{1}{4} \cdot 3-1 \\
& =\frac{3}{4}-1 \\
& =-\frac{1}{4}
\end{aligned}
$$

3. Solve the equation:

$$
\ln (x+20)-\ln (x+2)=\ln x
$$

First we need to combine the logarithms on the left hand side:

$$
\begin{aligned}
\ln (x+20)-\ln (x+2) & =\ln x \\
\ln \left(\frac{x+20}{x+2}\right) & =\ln x
\end{aligned}
$$

Then since logarithms are one-to-one, we can "drop the logs" to get an algebraic expression.

$$
\frac{x+20}{x+2}=x
$$

Now solve for x.

$$
\begin{aligned}
\frac{x+20}{x+2} & =x \\
x+20 & =x(x+2) \\
x+20 & =x^{2}+2 x \\
0 & =x^{2}+x-20 \\
0 & =(x-4)(x+5)
\end{aligned}
$$

The algebraic equation has solutions $x=4$ and $x=-5$. But we need to check these solutions to see if they make sense in the logarithmic equation. In particular, we need to check whether $x=4$ and $x=-5$ are in the domains of the logarithmic functions in the logarithmic equation.

$$
\begin{array}{ll}
\ln (4+20)=\ln (24) & (\text { fine } \\
\ln (4+2)=\ln (6) & \text { (fine) } \\
\ln (4)=\ln (4) & \text { (fine) } \\
\ln (-5+20)=\ln (15) & \text { (fine) } \\
\ln (-5+2)=\ln (-3) & \text { (undefined!) } \\
\ln (-5)=\ln (-5) & \text { (undefined!) }
\end{array}
$$

So $x=4$ is a solution to the original logarithmic equation, but $x=-5$ is not.
4. How long will it take $\$ 1000$ to be worth $\$ 3500$ if invested at 10.5% interest compounded quarterly?

The formula to use is:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Here $P=1000$, and $r=.105$. We want to find t such that $A=3500$, which means we have to solve the following equation for t :

$$
\begin{aligned}
3500 & =1000\left(1+\frac{.105}{4}\right)^{4 t} \\
3.5 & =\left(1+\frac{.105}{4}\right)^{4 t} \\
\ln (3.5) & =\ln \left(\left(1+\frac{.105}{4}\right)^{4 t}\right) \\
\ln (3.5) & =4 t \cdot \ln \left(1+\frac{.105}{4}\right) \\
t & =\frac{\ln (3.5)}{4 \ln \left(1+\frac{.105}{4}\right)} \\
t & \approx 12.09
\end{aligned}
$$

It will take approximately 12.09 years for the investment to grow to $\$ 3500$.

