C33 Sampling
David Housman
[bookmark: concepts]Concepts
Suppose we have a known population attribute described by the random variable  with pdf , mean , and standard deviation . A random sample of the population attribute is the list  of independent random variables each having the same distribution as . A statistic is a function  from random samples. Two important statistics are the sample mean

and the sample variance

We are interested in the distribution of , called the sampling distribution of .
[image: 31probability.png]
An approximation to the sampling distribution can be found via simulation. Before computers became powerful enough to carry out large simulations, many sampling distributions were obtained theoretically using calculus and algebra. Some of these results are listed below.
1.  and .
1.  and  where  is the fourth central moment of each . The table provides formulas for  for several random variables (mathworld.wolfram.com is a good source for this type of information).

	Random Variable
	
	
	

	Binomial
	
	
	

	Poisson
	
	
	

	Geometric
	
	
	

	NegativeBinomial
	
	
	

	Uniform
	
	
	

	Normal
	
	
	

	LogNormal
	
	
	

	Exponential
	
	
	

	Gamma
	
	
	


1. The limit of the distribution of  as  approaches  is the standard normal distribution.
1. [bookmark: _GoBack]The limit of the distribution of  as  approaches  is the standard normal distribution.
1. If each , then  and .
1. If each , then  has a Student  distribution with  degrees of freedom.
1. If each , then .
1. If each , then .
[bookmark: cereal-example]Cereal Example
A cereal manufacturer packages cereal in boxes with a 12-ounce label weight. Suppose that the actual distribution of weights is normal with mean 12.2 ounces and standard deviation 0.2 ounce. Use both simulation and theoretical approaches to find the probabilities of the following events.
1. A single box is under the labeled weight.
# Simulation approach
nruns = 10000
tibble(x = rnorm(nruns, 12.2, 0.2)) |>
  summarise(prob = sum(x < 12) / nruns)
# A tibble: 1 × 1
   prob
  <dbl>
1 0.156
#Theoretical approach
pnorm(12, 12.2, 0.2)
[1] 0.1586553
1. The mean of a sample of four boxes is under the labeled weight.
# Simulation approach
nruns = 10000
n = 4
tibble(run = rep(1:nruns, each = 4),
       x = rnorm(n*nruns, 12.2, 0.2)) |>
  group_by(run) |>
  summarise(mean = mean(x)) |>
  summarise(prob = sum(mean < 12) / nruns)
# A tibble: 1 × 1
    prob
   <dbl>
1 0.0241
#Theoretical approach
pnorm(12, 12.2, 0.2/sqrt(4))
[1] 0.02275013
1. The standard deviation of a sample of four boxes is under 0.2 ounce.
# Simulation approach
nruns = 10000
n = 4
tibble(run = rep(1:nruns, each = 4),
       x = rnorm(n*nruns, 12.2, 0.2)) |>
  group_by(run) |>
  summarise(sd = sd(x)) |>
  summarise(prob = sum(sd < 0.2) / nruns)
# A tibble: 1 × 1
   prob
  <dbl>
1 0.604
#Theoretical approach
pgamma(0.2^2, shape = (4-1)/2, scale = 2*0.2^2/(4-1))
[1] 0.6083748
Comments: Simulation is an all-purpose tool but requires substantial code and with  the answers are within  with 95% confidence. Theoretical tools provide exact answers (up to the precision of the numerical approximations the integrations) but require that theorems have been proved.
[bookmark: widget-lifetime-example]Widget Lifetime Example
The lifetimes of widgets follow an exponential distribution with a mean of 250 hours.
1. What proportion of the widgets will fail within 120 hours?
# Simulation approach
nruns = 10000
tibble(x = rexp(nruns, rate = 1/250)) |>
  summarise(prob = sum(x < 120) / nruns)
# A tibble: 1 × 1
   prob
  <dbl>
1 0.381
#Theoretical approach
pexp(120, rate = 1/250)
[1] 0.3812166
pgamma(120, shape = 1, scale = 250)
[1] 0.3812166
1. What is the probability that the mean lifetime of a sample of nine widgets is under 120 hours?
# Simulation approach
nruns = 10000
n = 9
tibble(run = rep(1:nruns, each = n),
       x = rexp(n*nruns, rate = 1/250)) |>
  group_by(run) |>
  summarise(mean = mean(x)) |>
  summarise(prob = sum(mean < 120) / nruns)
# A tibble: 1 × 1
    prob
   <dbl>
1 0.0331
If  is the lifetime of widgets, then , and by a theorem, .
#Theoretical approach
pgamma(120, shape = 9, scale = 250/9)
[1] 0.03249181
The following shows that the sample size must be larger than 9 for the CLT to provide a good approximation.
# CLT approach
pnorm(120, 250, 250/sqrt(9))
[1] 0.05937994
1. What is the probability that in a sample of nine widgets, at least one will fail within 120 hours?
# Simulation approach
nruns = 10000
n = 9
tibble(run = rep(1:nruns, each = n),
       x = rexp(n*nruns, rate = 1/250)) |>
  group_by(run) |>
  summarise(min = min(x)) |>
  summarise(prob = sum(min < 120) / nruns)
# A tibble: 1 × 1
   prob
  <dbl>
1 0.987
#Theoretical approach
1 - (1 - pexp(120, rate = 1/250))^9
[1] 0.9867001
[bookmark: coin-flips-example]Coin Flips Example
What is the probability that there are fewer than 35 heads in 100 flips of a fair coin?
# Simulation approach 1
nruns = 10000
n = 100
tibble(run = rep(1:nruns, each = n),
       x = sample(0:1, n*nruns, replace = TRUE)) |>
  group_by(run) |>
  summarise(heads = sum(x)) |>
  summarise(prob = sum(heads < 35) / nruns)
# A tibble: 1 × 1
   prob
  <dbl>
1 0.001
# Simulation approach 2
nruns = 1000000
tibble(x = rbinom(nruns, 100, 0.5)) |>
  summarise(prob = sum(x < 35) / nruns)
# A tibble: 1 × 1
      prob
     <dbl>
1 0.000895
#Exact amswer
pbinom(34, 100, 0.5)
[1] 0.0008949652
#CLT approximation
pnorm(34.5, 100*0.5, sqrt(100*0.5*(1-0.5)))
[1] 0.0009676032
[bookmark: gamma-population-sampling-distributions]Gamma Population Sampling Distributions
Suppose the population attribute  has a gamma distribution with shape parameter  and scale parameter .
1. Calculate the mean and standard deviation of . Display the pdf of  and a normal distribution with the same mean and standard deviation as .
alpha = 1
beta = 1
mu = alpha*beta; mu
[1] 1
sigma = sqrt(alpha)*beta; sigma
[1] 1
ggplot() +
  geom_function(fun = dgamma, args = list(shape = alpha, scale = beta), xlim = c(0, 7), color = "blue") +
  geom_function(fun = dnorm, args = list(mean = mu, sd = sigma), xlim = c(0, 7), color = "red")
[image: C33-Sampling_files/figure-docx/unnamed-chunk-20-1.png]
1. For samples of size , simulate sampling distributions for the sample mean, sample variance, and method of moments estimators.
nruns = 10000
n = 8
set.seed(19570830)
samples = tibble(
  run = rep(1:nruns, each = n), 
  x = rgamma(n*nruns, shape = alpha, scale = beta)
)
statistics = samples |>
  group_by(run) |>
  summarise(
    xbar = mean(x),
    s2 = var(x),
    v = (n-1)/n*s2,
    alpha.hat = xbar^2 / v,
    beta.hat = v / xbar
  )
1. For the statistic , calculate the theoretical mean and variance and the mean, standard error (standard deviation divided by the square root of the number of simulation runs), and variance of the simulated values. Display the sampling distribution as a density plot with what should be a matching gamma pdf and could be a matching normal pdf if the sample size is sufficiently large. Compare the simulation with theoretical results.
xbar.dist = statistics |>
  summarize(
    tmean = mu,
    mean = mean(xbar),
    se = sd(xbar)/sqrt(nruns),
    tvar = sigma^2 / n,
    var = var(xbar)
  )
xbar.dist
# A tibble: 1 × 5
  tmean  mean      se  tvar   var
  <dbl> <dbl>   <dbl> <dbl> <dbl>
1     1 0.998 0.00351 0.125 0.123
ggplot(statistics, aes(x = xbar)) + 
  geom_density() +
  geom_function(fun = dgamma, args = list(shape = n*alpha, scale = beta/n), color = "blue") +
  geom_function(fun = dnorm, args = list(mean = mu, sd = sigma/sqrt(n)), color = "red")
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The sampling distribution of  is the gamma distribution specified in the theorems and is different from but close to a normal distribution (despite  being only 8 and the population attribute being far from normal). That the statistic  is an unbiased estimator for  is confirmed here since the approximated value of  is within one standard error of . The approximated value of  is also close to the theoretical value.
1. For the statistic , calculate the theoretical mean and variance and the mean, standard error, and variance of the simulated values. Display the sampling distribution as a density plot with what could be a matching normal pdf if the sample size is sufficiently large. Compare the simulation with theoretical results.
s2.dist = statistics |>
  summarize(
    tmean = sigma^2,
    mean = mean(s2),
    se = sd(s2) / sqrt(nruns),
    tvar = 3*alpha*(alpha+2)*beta^4/n - (alpha*beta^2)^2*(n-3)/n/(n-1),
    var = var(s2)
  )
s2.dist
# A tibble: 1 × 5
  tmean  mean     se  tvar   var
  <dbl> <dbl>  <dbl> <dbl> <dbl>
1     1 0.999 0.0101  1.04  1.02
ggplot(statistics, aes(x = s2)) + 
  geom_density() +
  geom_function(fun = dnorm, args = list(mean = s2.dist$tmean, sd = sqrt(s2.dist$tvar)), color = "red")
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The sampling distribution of  was not specified by theoretically and is definitely different from a normal distribution. That the statistic  is an unbiased estimator for  is confirmed here since the approximated value of  is within one standard error of . The approximated value of  is also close to the theoretical value.
1. For the statistic , calculate the mean, standard error, and standard deviation of the simulated values. Display the sampling distribution as a density plot with a normal pdf with the same mean and standard deviation as the simulated data. Compare the simulation with theoretical results.
beta.hat.dist = statistics |>
  summarize(
    tmean = beta,
    mean = mean(beta.hat),
    se = sd(beta.hat) / sqrt(nruns),
    sd = sd(beta.hat)
  )
beta.hat.dist
# A tibble: 1 × 4
  tmean  mean      se    sd
  <dbl> <dbl>   <dbl> <dbl>
1     1 0.778 0.00550 0.550
ggplot(statistics, aes(x = beta.hat)) + 
  geom_density() +
  geom_function(fun = dnorm, args = list(mean = beta.hat.dist$mean, sd = beta.hat.dist$sd), color = "red")
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The statistic  is definitely biased as an estimator for  and its distribution though unimodal is skewed right and clearly different from a normal distribution.
1. For the statistic , calculate the mean, standard error, and standard deviation of the simulated values. Display the sampling distribution as a density plot with a normal pdf with the same mean and standard deviation as the simulated data. Compare the simulation with theoretical results.
alpha.hat.dist = statistics |>
  summarize(
    tmean = alpha,
    mean = mean(alpha.hat),
    se = sd(alpha.hat) / sqrt(nruns),
    sd = sd(alpha.hat)
  )
alpha.hat.dist
# A tibble: 1 × 4
  tmean  mean     se    sd
  <dbl> <dbl>  <dbl> <dbl>
1     1  1.76 0.0120  1.20
ggplot(statistics, aes(x = alpha.hat)) + 
  geom_density() +
  geom_function(fun = dnorm, args = list(mean = alpha.hat.dist$mean, sd = alpha.hat.dist$sd), color = "red")
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The statistic  is definitely biased as an estimator for  and its distribution though unimodal is skewed right and clearly different from a normal distribution.`
[bookmark: proving-the-theoretical-results]Proving the Theoretical Results
During our discussion of parameter estimation, we proved the general expressions for , , and . Our goal in this section is to examine result 5 in the Concepts section: If each , then  and . We will prove the first half and provide numerical evidence to support the second half.
1. If  and  are numbers and , then .
· Proof. The cdf of  is
· 
· and
· 
· which is the desired pdf.
1. If  and  are independent continuous random variables with pdfs  and , then  is a continuous random variable with pdf .
· Proof. Suppose  is the cdf for . Then
· 
· and
· 
1. If  and  are independent, then .
· Proof. Note first that the mean and standard deviation of  are correct based on earlier results. By result 1, the pdf of  is
· 
· Completing the square on the quadratic expression, we obtain
· 
· Plugging back into our expression for the pdf, we obtain
· $
· which is the desired pdf.
1. If  for  are independent, then .
· Proof. . By result 1,  for . By repeated use of result 3, . By result 1, is the desired distribution.
1. If  for  are independent, then .
Proof. By result 4, . By result 2, we obtain the desired distribution.
1. Choose a positive integer , a real number , and a positive real number . For samples of size  from a population attribute , simulate sampling distributions for the sample variance. Compare the mean, standard deviation, pdf, and cdf from the simulation with the theoretical .
nruns = 10000
n = 7; mu = 29; sigma = 3
set.seed(19570830)
samples = tibble(
  run = rep(1:nruns, each = n), 
  x = rnorm(n*nruns, mean = mu, sd = sigma)
)
statistics = samples |>
  group_by(run) |>
  summarise(s2 = var(x))
statistics |>
  summarise(
    smean = mean(s2),
    se.smean = sd(s2)/sqrt(nruns),
    tmean = sigma^2,
    ssd = sd(s2),
    tsd = sqrt(3*sigma^4/n - sigma^4*(n-3)/n/(n-1))
  )
# A tibble: 1 × 5
  smean se.smean tmean   ssd   tsd
  <dbl>    <dbl> <dbl> <dbl> <dbl>
1  8.97   0.0513     9  5.13  5.20
ggplot(statistics, aes(x = s2)) +
  geom_density() +
  geom_function(fun = dgamma, args = list(shape = (n-1)/2, scale = 2*sigma^2/(n-1)), color = "red")
[image: C33-Sampling_files/figure-docx/unnamed-chunk-27-1.png]
ggplot(statistics, aes(x = s2)) +
  stat_ecdf() +
  geom_function(fun = pgamma, args = list(shape = (n-1)/2, scale = 2*sigma^2/(n-1)), color = "red")
[image: C33-Sampling_files/figure-docx/unnamed-chunk-28-1.png]
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