2.4 The Precise Definition of a Limit
Math 1271, TA: Amy DeCelles

1. Overview

Definition of a Limit

We say “the limit of \(f(x) \) as \(x \) approaches \(a \) is \(L \)” if the following condition is satisfied:

\[
\text{For every number } \epsilon > 0 \text{ there is a number } \delta > 0 \text{ such that:}
\]
\[
\text{if } |x - a| < \delta \text{ then } |f(x) - L| < \epsilon
\]

Parsing this definition

Our intuitive understanding is that \(L \) is the limit (of \(f(x) \) as \(x \to a \)) if \(f(x) \) gets closer and closer to \(L \) as \(x \) gets closer and closer to \(a \). Let’s see how this matches up with the precise definition.

First look at the expression \(|x - a| \). This is the distance between \(x \) and \(a \). So if we make \(\delta \) smaller and smaller, that means that \(x \) is getting closer and closer to \(a \). Similarly, \(|f(x) - L| \) is the distance between the \(y \)-values \(f(x) \) and \(L \), so if \(\epsilon \) gets smaller and smaller, that means that \(f(x) \) is getting closer and closer to \(L \). So, just to make this clear: \(\delta \) is a distance that specifies an \(x \)-range: how far away from \(a \) can \(x \) be? ... it must be within \(\delta \) units of \(a \). We’ll call this \(x \)-range a “\(\delta \)-neighborhood” of \(a \). And \(\epsilon \) is a distance that specifies a \(y \)-range: how far away from \(L \) can \(f(x) \) be? ... it will be within \(\epsilon \) units of \(L \). This \(y \)-range we’ll call an \(\epsilon \)-neighborhood of \(L \).

So when we say that:

\[
\text{if } |x - a| < \delta \text{ then } |f(x) - L| < \epsilon
\]

that is like saying:

If \(x \) is close enough to \(a \) (namely in a \(\delta \)-neighborhood of \(a \)) then \(f(x) \) is guaranteed to be close to \(L \) (namely in an \(\epsilon \)-neighborhood of \(L \)).

Ok, well then, what is the deal with the “for every \(\epsilon > 0 \) there is a \(\delta > 0 \)” part? This means that no matter how small you make the \(\epsilon \)-neighborhood of \(L \), you will always be able to find a \(\delta \)-neighborhood of \(a \), that “works,” i.e. a \(\delta \)-neighborhood small enough to guarantee that the \(y \)-values of the graph of \(f \) are in the \(\epsilon \)-neighborhood of \(L \). The point is that we can get \(f(x) \) infinitely close to \(L \), by just making the \(\delta \)-neighborhood of \(a \) smaller and smaller.

2. Example

Problem: Prove, using the \(\epsilon \)-\(\delta \) definition of limit that:

\[
\lim_{x \to 1} 5x - 3 = 2
\]

Solution:

We need to show:

For any \(\epsilon > 0 \), there is a \(\delta > 0 \) such that:

\[
\text{if } |x - 1| < \delta \text{ then } |(5x - 3) - 2| < \epsilon
\]
Before we write our proof, we need to do some thinking. (This is like the prewriting you would do before writing a paper.) We treat ϵ like a fixed number. We want to figure out what δ will work, given the ϵ we have. We start with the ϵ condition:

$$|(5x - 3) - 2| < \epsilon$$

Simplifying, we get:

$$|5x - 5| < \epsilon$$

We factor out a 5:

$$5 \cdot |x - 1| < \epsilon$$

So if we rewrite what we have to show, using the simplification we just did, we get:

For any $\epsilon > 0$, there is a $\delta > 0$ such that:

$$\text{if } |x - 1| < \delta \text{ then } 5 \cdot |x - 1| < \epsilon$$

Well, if $|x - 1| < \delta$ then $5 \cdot |x - 1| < 5\delta$. So we just need to have $5\delta \leq \epsilon$. So we will choose $\delta = \frac{\epsilon}{5}$.

Now that we have figured out what δ will work, we need to go back and write up an argument. (This is like writing a paper: we take the work we just did and arrange it nicely to construct an argument.)

Proof:

Given any $\epsilon > 0$, we can define $\delta = \frac{\epsilon}{5}$. Then:

$$\text{if } |x - 1| < \delta \text{ then } |x - 1| < \frac{\epsilon}{5}$$

then $5 \cdot |x - 1| < 5 \cdot \frac{\epsilon}{5}$

then $5 \cdot |x - 1| < \epsilon$

But $5 \cdot |x - 1| = |(5x - 3) - 2|$, so we have shown:

$$\text{if } |x - 1| < \delta \text{ then } |(5x - 3) - 2| < \epsilon$$

So we have shown:

For any $\epsilon > 0$, there is a $\delta > 0$ such that:

$$\text{if } |x - 1| < \delta \text{ then } |(5x - 3) - 2| < \epsilon$$

and we are done!