3.1 Derivatives of Polynomials and Exponential Functions
Math 1271, TA: Amy DeCelles

1. Overview

Outline:

1. The derivative of a constant is zero and the derivative of x is one.
2. Power Rule: $\frac{d}{dx}(x^a) = ax^{a-1}$ for all $a \neq 0$.
3. Constant multiples “slide out”: $\frac{d}{dx} cf(x) = c \frac{d}{dx} f(x)$.
4. The derivative of a sum (or difference) is the sum (or difference) of the derivatives.
5. The derivative of e^x is itself.

With these basic facts we can take the derivative of any polynomial function, any exponential function, any root function, and sums and differences of such.

Because taking the derivative of a power of x is easy, it’s good to remember how to rewrite fractions and roots in terms of powers:

1. $\frac{1}{x^a} = x^{-a}$
2. $\sqrt[n]{x} = x^{1/n}$

2. Examples

1.) Find the derivative of $y = \frac{x^2 - 2\sqrt{x}}{x}$

We can rewrite y as:

$$y = \frac{x^2}{x} - \frac{2\sqrt{x}}{x} = x - \left(2x^{1/2}\right)(x^{-1}) = x - 2x^{-1/2}$$

Now we can use the power rule:

$$y' = 1 - 2\left(-\frac{1}{2}\right)(x^{-3/2}) = 1 + x^{-3/2}$$

2.) Find the derivative of $y = e^{x+1} + 1$

We can rewrite y as:

$$y = (e^x)(e^1) + 1 = e(e^x) + 1$$

And e is just a constant number, so it “slides out” when we take the derivative:

$$y' = e(\frac{d}{dx}e^x) + 0$$

But the derivative of e^x is itself, so:

$$y' = e(e^x) = e^{x+1}$$
3.) Find all the places where the following curve has a horizontal tangent:

\[y = 2x^3 + 3x^2 - 36x + 17 \]

A horizontal line has slope zero, and the slope of the tangent line is the value of the derivative, so \(y \) will have a horizontal tangent when \(y' = 0 \). So we need to take the derivative, set it equal to zero, and solve for \(x \).

Using the power rule, we compute the derivative to be:

\[y' = 6x^2 + 6x - 36 + 0 \]

So we want to solve:

\[6x^2 + 6x - 36 = 0 \]

We can factor this:

\[6x^2 + 6x - 36 = 6(x^2 + x - 6) = 6(x - 2)(x + 3) \]

So \(y' = 0 \) when \(x = -3 \) or \(x = 2 \). So we can conclude that \(y \) has a horizontal tangent when \(x = -3 \) or \(x = 2 \).