Math 1151, Exam 3 (in-class)

April 30, 2010

Name: Amy's Solutions

Discussion Section: N / A

Discussion TA: N / A
This exam has 8 multiple-choice problems, each worth 5 points. When you have decided on a correct answer to a given question, circle the answer in this booklet. There is no partial credit for the multiple-choice problems. This exam has 4 open-ended problems, whose point-values are given in the problem. Make sure to show all your work and circle your final answer. This exam is closed book and closed notes. You may use a scientific calculator but not a graphing calculator.

Formulas:

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(a_{1}+(k-1) d\right)=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& \sum_{k=1}^{n} a_{1} r^{k-1}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
\end{aligned}
$$

1. For the vector $v=3 \hat{i}-3 \sqrt{3} \hat{j}$, what is \hat{v} ?

First compute the magnitude:

$$
|v|=\sqrt{(3)^{2}+(-3 \sqrt{3})^{2}}=\sqrt{9+27}=\sqrt{36}=6
$$

Then divide v by $|v|$ to get the unit vector:

$$
\hat{v}=\frac{v}{|v|}=\frac{3}{6} \hat{i}-\frac{3 \sqrt{3}}{6} \hat{j}=\frac{1}{2} \hat{i}-\frac{\sqrt{3}}{2} \hat{j}
$$

2. Find the equation for the parabola with focus $(4,0)$ and directrix $x=-4$.

This parabola opens to the right, and its vertex is at the origin, so its equation is of the form $y^{2}=4 a x$. The distance from the focus to the vertex is $a=4$, so the equation is $y^{2}=16 x$.
3. Find the vertices of the hyperbola

$$
\frac{y^{2}}{9}-\frac{x^{2}}{16}=1
$$

This hyperbola opens up and down, and its center is at the origin, so the vertices are on the y-axis, and we get the coordinates by looking at the square root of the number under the $y^{2}:(0, \pm 3)$.
4. What is the value of the sum $\sum_{k=1}^{5}(2 k+3)$?

Use linearity:

$$
\sum_{k=1}^{5}(2 k+3)=2 \cdot \sum_{k=1}^{5} k+\sum_{k=1}^{5} 3=2 \cdot\left(\frac{5 \cdot 6}{2}\right)+5 \cdot 3=45
$$

Or use Gauss' trick:

$$
\sum_{k=1}^{5}(2 k+3)=\frac{5}{2}(5+13)=45
$$

5. Which best describes the following system of equations?

$$
\left\{\begin{aligned}
2 x+3 y & =1 \\
-10 x-15 y & =-5
\end{aligned}\right.
$$

Multiplying (1) by 5 and adding to (2) yields the equation $0=0$, which is trivially true ("duh" statement.) So the system has infinitely many solutions, i.e. it is a consistent system of dependent equations.
6. Which best describes the sequence $3, \frac{6}{5}, \frac{12}{25}, \frac{24}{125}, \ldots$?

This is a geometric series, because each term can be obtained from the one before it by multiplying by $2 / 5$.
7. Find the sum: $4+11+18+25+\ldots+697$.

Notice that the numbers come from an arithmetic sequence with first term $a_{1}=4$ and common difference $d=7$. So to get the sum we will add the first and the last, then multiply by $n / 2$, where n is the index of the last term. To find the index of 697 we use the general formula:

$$
a_{n}=a_{1}+(n-1) d=4+7(n-1)=7 n-3
$$

So if a_{n} is 697 , that means

$$
\begin{aligned}
7 n-3 & =697 \\
7 n & =700 \\
n & =100
\end{aligned}
$$

So the sum is

$$
S_{n}=\frac{100}{2} \cdot(4+697)=35,050
$$

8. Find the sum: $\sum_{k=1}^{\infty} 5 \cdot\left(\frac{2}{3}\right)^{k-1}$.

This is a geometric series with $a_{1}=5$ and $r=2 / 3$. Since $|r|<1$, the series converges to

$$
\frac{a_{1}}{1-r}=\frac{5}{1 / 3}=15
$$

9. (10 points) For the vectors $v=2 \hat{i}+3 \hat{j}$, and $w=-\hat{i}+3 \hat{j}$,
(a) Write v as the sum of two vectors v_{1} and v_{2}, where v_{1} is in the direction of w and v_{2} is orthogonal to w.

The two vectors are

$$
v_{1}=\frac{v \cdot w}{|w|^{2}} w \quad \text { and } \quad v_{2}=v-v_{1}
$$

The dot product of v and w is $v \cdot w=(-2)+(9)=7$, and the magnitude squared of w is $|w|^{2}=(-1)^{2}+(3)^{2}=10$. Plugging into the formula for v_{1},

$$
v_{1}=\frac{7}{10} w=-\frac{7}{10} \hat{i}+\frac{21}{10} \hat{j}
$$

To get v_{2} we just subtract this from v :

$$
v_{2}=\left(2+\frac{7}{10}\right) \hat{i}+\left(3-\frac{21}{10}\right) \hat{j}=\frac{27}{10} \hat{i}+\frac{9}{10} \hat{j}
$$

(b) Graph v, v_{1}, v_{2}, and w on the same set of axes.

10. (10 points) For the conic section with the following equation,

$$
4(x+2)^{2}+25(y-1)^{2}=100
$$

(a) Find the center, foci, and vertices.

Divide both sides of the equation by 100 to get

$$
\frac{(x+2)^{2}}{25}+\frac{(y-1)^{2}}{4}=1
$$

Then we can see that this is an ellipse with center $(-2,1)$. Since the larger number is underneath the x-term, the major axis is horizontal and $a=5, b=2$, and c is

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{21}
$$

So the foci are $(-2 \pm \sqrt{21}, 1)$ and the vertices are $(-2 \pm 5,1)$, i.e. $(-7,1)$ and $(3,1)$
(b) Graph the conic section.

11. (20 points) For $P(x)=x^{3}-3 x^{2}+7 x-5$.
(a) List all the possible rational roots of $P(x)$.

Since the leading coefficient is $a_{n}=1$, the possible rational roots are just the numbers that divide the constant term, which is $a_{0}=-5$. So the possible rational roots are: ± 1, ± 5.
(b) Factor $P(x)$ over the real numbers.

Try plugging the possible rational roots in, starting with the easiest one, $x=1$. We get

$$
P(1)=1-3+7-5=0
$$

So $(x-1)$ is a factor. We use polynomial long division to factor it out.

$$
x-1) \begin{array}{r}
x^{2}-2 x+5 \\
\frac{x^{3}-3 x^{2}+7 x-5}{-x^{3}+x^{2}} \\
\frac{-2 x^{2}+7 x}{2 x^{2}-2 x} \\
\frac{5 x-5}{0}
\end{array}
$$

Now we have to see if $x^{2}-2 x+5$ factors over the real numbers. There is no obvious way to factor it, so we use the quadratic formula to find the roots:

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(5)}}{2(1)}=\frac{2 \pm \sqrt{-16}}{2}=\frac{2 \pm 4 i}{2}=1 \pm 2 i
$$

These roots are not real, so the quadratic $x^{2}-2 x+5$ does not factor over the real numbers. So, over the real numbers, $P(x)$ factors as

$$
P(x)=(x-1)\left(x^{2}-2 x+5\right)
$$

(c) Factor $P(x)$ over the complex numbers.

As we computed above, the roots of $P(x)$ are $1,1+2 i$ and $1-2 i$, so over the complex numbers $P(x)$ factors as

$$
P(x)=(x-1)(x-(1+2 i))(x-(1-2 i))
$$

12. (20 points) Solve the system of equations:

$$
\left\{\begin{align*}
x+y-z & =-1 \tag{1}\\
4 x-3 y+2 z & =16 \\
2 x-2 y-3 z & =5
\end{align*}\right.
$$

Is this system consistent or inconsistent? If consistent, are the equations dependent or independent?

Using matrices:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & -1 \\
4 & -3 & 2 & 16 \\
2 & -2 & -3 & 5
\end{array}\right) \quad R_{2}=-4 r_{1}+r_{2}, R_{3}=-2 r_{1}+r_{3}\left(\begin{array}{ccc|c}
1 & 1 & -1 & -1 \\
0 & -7 & 6 & 20 \\
0 & -4 & -1 & 7
\end{array}\right) \xrightarrow{R_{3}=-r_{3}}\left(\begin{array}{ccc|c}
1 & 1 & -1 & -1 \\
0 & -7 & 6 & 20 \\
0 & 4 & 1 & -7
\end{array}\right) \\
& R_{2}=2 r_{3}+r_{2}\left(\begin{array}{ccc|c}
1 & 1 & -1 & -1 \\
0 & 1 & 8 & 6 \\
0 & 4 & 1 & -7
\end{array}\right) \xrightarrow{R_{3}=-4 r_{2}+r_{3}}\left(\begin{array}{ccc|c}
1 & 1 & -1 & -1 \\
0 & 1 & 8 & 6 \\
0 & 0 & -31 & -31
\end{array}\right) \xrightarrow{R_{3}=-r_{3} / 31}\left(\begin{array}{ccc|c}
1 & 1 & -1 & -1 \\
0 & 1 & 8 & 6 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& R_{2}=-8 r_{3}+r_{2}, R_{1}=r_{3}+r_{1} \\
& \xrightarrow{2}\left(\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1
\end{array}\right) \xrightarrow{R_{1}=r_{1}-r_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1
\end{array}\right) \Longrightarrow\left\{\begin{array}{l}
x=2 \\
y=-2 \\
z=1
\end{array}\right.
\end{aligned}
$$

So there is one solution, $(2,-2,1)$, which means this is a consistent system of independent equations.

Scratch paper. (If you want your work on this page to be graded, make sure to label your work according to the problem you're solving, and make sure to write a note next to the original problem.)

