Math 1151, Lecture 010, Evaluative Exercise 2 February 18, 2010

Name: _____

Discussion Section:

Discussion TA:

Seating Section: Left Front Right Front Left Back Right Back

You have twenty-five minutes to complete the following five problems, without using your notes, your book, or a calculator.

Sum and Difference Formulas

 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

Double-angle Formulas

$\sin(2\theta)$	=	$2\sin\theta\cos\theta$
$\cos(2\theta)$	=	$\cos^2\theta - \sin^2\theta$
$\cos(2\theta)$	=	$2\cos^2\theta - 1$
$\cos(2\theta)$	=	$1 - 2\sin^2\theta$

Half-angle Formulas

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$
$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

1. Solve for x:

$$\frac{\pi}{2} = \frac{2}{3}\sin^{-1}x + \frac{\pi}{3}$$

2. Establish the identity:

$$1 - \frac{\sin^2 \theta}{1 - \cos \theta} = -\cos \theta$$

3. If $\cos \alpha = \frac{1}{4}$, $0 < \alpha < \frac{\pi}{2}$ and $\sin \beta = -\frac{3}{5}$, $-\frac{\pi}{2} < \beta < 0$, find the exact value of (a) $\sin(\alpha + \beta)$

(b) $\cos(2\alpha)$

(c) $\sin\left(\frac{\beta}{2}\right)$

4. Develop a formula for $\cos 3\theta$ as a third degree polynomial in the variable $\cos \theta$. (That means your answer should be in terms of powers of $\cos \theta$, without any $\sin \theta$, $\sin n\theta$, or $\cos n\theta$.)

5. (Challenge) Write an equivalent expression for $\cos^4 \theta$ that does not involve any powers of sine or cosine greater than 1.