Math 1151, Lecture 010, Evaluative Exercise 2
February 18, 2010

Name: \qquad

Discussion Section:

\qquad

Discussion TA: \qquad

Seating Section:

Left Front
Right Front
Right Back

You have twenty-five minutes to complete the following five problems, without using your notes, your book, or a calculator.

Sum and Difference Formulas

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{aligned}
$$

Double-angle Formulas

$$
\begin{aligned}
& \sin (2 \theta)=2 \sin \theta \cos \theta \\
& \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \\
& \cos (2 \theta)=2 \cos ^{2} \theta-1 \\
& \cos (2 \theta)=1-2 \sin ^{2} \theta
\end{aligned}
$$

Half-angle Formulas

$$
\begin{aligned}
& \sin ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{2} \\
& \cos ^{2} \frac{\alpha}{2}=\frac{1+\cos \alpha}{2}
\end{aligned}
$$

1. Solve for x :

$$
\frac{\pi}{2}=\frac{2}{3} \sin ^{-1} x+\frac{\pi}{3}
$$

2. Establish the identity:

$$
1-\frac{\sin ^{2} \theta}{1-\cos \theta}=-\cos \theta
$$

3. If $\cos \alpha=\frac{1}{4}, 0<\alpha<\frac{\pi}{2}$ and $\sin \beta=-\frac{3}{5},-\frac{\pi}{2}<\beta<0$, find the exact value of
(a) $\sin (\alpha+\beta)$
(b) $\cos (2 \alpha)$
(c) $\sin \left(\frac{\beta}{2}\right)$
4. Develop a formula for $\cos 3 \theta$ as a third degree polynomial in the variable $\cos \theta$. (That means your answer should be in terms of powers of $\cos \theta$, without any $\sin \theta, \sin n \theta$, or $\cos n \theta$.)
5. (Challenge) Write an equivalent expression for $\cos ^{4} \theta$ that does not involve any powers of sine or cosine greater than 1.
