Math 1151, Lecture 010, Evaluative Exercise 3 March 4, 2010

Name: _____

Discussion Section:

Discussion TA:

Seating Section: Left Front Right Front Left Back Right Back

You have twenty-five minutes to complete the following six problems, without using your notes or your book. You may use a scientific a calculator.

Sum and Difference Formulas

 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

Double-angle Formulas

$\sin(2\theta)$	=	$2\sin\theta\cos\theta$
$\cos(2\theta)$	=	$\cos^2\theta - \sin^2\theta$
$\cos(2\theta)$	=	$2\cos^2\theta - 1$
$\cos(2\theta)$	=	$1 - 2\sin^2\theta$

Half-angle Formulas

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$
$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

1. Solve the equation. Give a general formula for all the solutions. List six solutions.

$$\sin(2\theta + \frac{\pi}{2}) = \frac{\sqrt{3}}{2}$$

2. Solve the equation on the interval $0 \le \theta < 2\pi$:

 $2\sin^2\theta = \cos\theta + 1$

3. David is building a wheelchair ramp from ground level to a doorway, which is 3 feet above the ground. He wants to make sure that the inclination of the ramp is no more than 15°. How long should the ramp be in order for the angle of inclination to be 15°?

4. For the triangle: $A = 30^{\circ}$, $B = 20^{\circ}$, a = 5,

- (a) Solve the triangle.
- (b) Compute the area of the triangle.

- 5. For the triangle: $a = 3, b = 4, C = 40^{\circ}$,
 - (a) Solve the triangle.
 - (b) Compute the area of the triangle.

6. Challenge: Solve the triangle: $a = 6, b = 8, A = 35^{\circ}$.