Math 1151, Lecture 010, Evaluative Exercise 3
March 4, 2010

Name: \qquad

Discussion Section:

\qquad

Discussion TA: \qquad

Seating Section:
Left Front
Right Front
Left Back Right Back
You have twenty-five minutes to complete the following six problems, without using your notes or your book. You may use a scientific a calculator.

Sum and Difference Formulas

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{aligned}
$$

Double-angle Formulas

$$
\begin{aligned}
& \sin (2 \theta)=2 \sin \theta \cos \theta \\
& \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \\
& \cos (2 \theta)=2 \cos ^{2} \theta-1 \\
& \cos (2 \theta)=1-2 \sin ^{2} \theta
\end{aligned}
$$

Half-angle Formulas

$$
\begin{aligned}
& \sin ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{2} \\
& \cos ^{2} \frac{\alpha}{2}=\frac{1+\cos \alpha}{2}
\end{aligned}
$$

1. Solve the equation. Give a general formula for all the solutions. List six solutions.

$$
\sin \left(2 \theta+\frac{\pi}{2}\right)=\frac{\sqrt{3}}{2}
$$

2. Solve the equation on the interval $0 \leq \theta<2 \pi$:

$$
2 \sin ^{2} \theta=\cos \theta+1
$$

3. David is building a wheelchair ramp from ground level to a doorway, which is 3 feet above the ground. He wants to make sure that the inclination of the ramp is no more than 15°. How long should the ramp be in order for the angle of inclination to be 15° ?
4. For the triangle: $A=30^{\circ}, B=20^{\circ}, a=5$,
(a) Solve the triangle.
(b) Compute the area of the triangle.
5. For the triangle: $a=3, b=4, C=40^{\circ}$,
(a) Solve the triangle.
(b) Compute the area of the triangle.
6. Challenge: Solve the triangle: $a=6, b=8, A=35^{\circ}$.
