Let V be the set of bounded functions on the closed interval $[-\pi, \pi]$ that are piecewise continuous (i.e. continuous except perhaps at finitely many points.)

1. Show that V is a (real) vectorspace.
2. Show that

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

is an inner product on V.
3. Show that the functions

$$
1, \sin x, \cos x, \sin 2 x, \cos 2 x, \ldots, \sin k x, \cos k x, \ldots
$$

are mutually orthogonal in V; i.e. show that
(a) $\langle 1, \sin k x\rangle=0$ for all positive integers k
(b) $\langle 1, \cos k x\rangle=0$ for all positive integers k
(c) $\langle\sin k x, \sin \ell x\rangle=0$ for all positive integers $k \neq \ell$
(d) $\langle\cos k x, \cos \ell x\rangle=0$ for all positive integers $k \neq \ell$
(e) $\langle\sin k x, \cos \ell x\rangle=0$ for all positive integers k and ℓ

For (c), (d), (e), you may find the product-to-sum formulas helpful:

$$
\begin{aligned}
\sin \theta \sin \varphi & =\frac{\cos (\theta-\varphi)-\cos (\theta+\varphi)}{2} \\
\cos \theta \cos \varphi & =\frac{\cos (\theta-\varphi)+\cos (\theta+\varphi)}{2} \\
\sin \theta \cos \varphi & =\frac{\sin (\theta+\varphi)+\sin (\theta-\varphi)}{2}
\end{aligned}
$$

4. Show that
(a) $\langle\sin k x, \sin k x\rangle=\pi$
(b) $\langle\cos k x, \cos k x\rangle=\pi$
(c) $\langle 1,1\rangle=2 \pi$
