Let V be the set of bounded functions on the closed interval $[-\pi, \pi]$ that are piecewise continuous (i.e. continuous except perhaps at finitely many points.)

1. Show that V is a (real) vectorspace.

2. Show that

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(x) g(x) dx$$

is an inner product on V.

3. Show that the functions

1, $\sin x$, $\cos x$, $\sin 2x$, $\cos 2x$, ..., $\sin kx$, $\cos kx$, ...

are mutually orthogonal in V; i.e. show that

- (a) $\langle 1, \sin kx \rangle = 0$ for all positive integers k
- (b) $\langle 1, \cos kx \rangle = 0$ for all positive integers k
- (c) $\langle \sin kx, \sin \ell x \rangle = 0$ for all positive integers $k \neq \ell$
- (d) $\langle \cos kx, \cos \ell x \rangle = 0$ for all positive integers $k \neq \ell$
- (e) $\langle \sin kx, \cos \ell x \rangle = 0$ for all positive integers k and ℓ

For (c), (d), (e), you may find the product-to-sum formulas helpful:

$$\sin\theta\sin\varphi = \frac{\cos(\theta-\varphi) - \cos(\theta+\varphi)}{2}$$
$$\cos\theta\cos\varphi = \frac{\cos(\theta-\varphi) + \cos(\theta+\varphi)}{2}$$
$$\sin\theta\cos\varphi = \frac{\sin(\theta+\varphi) + \sin(\theta-\varphi)}{2}$$

- 4. Show that
 - (a) $\langle \sin kx, \sin kx \rangle = \pi$

(b) $\langle \cos kx, \cos kx \rangle = \pi$

(c) $\langle 1,1\rangle = 2\pi$