C31 Parameter Estimation
David Housman
Concepts
1. After obtaining data  from a sample of a population, we summarize with a statistic  such as the mean, median, standard deviation, or interquartile range. This is part of descriptive statistics.
1. We hope that the statistic  tells us something about a population parameter  such as  in the Poisson random variable,  and  in the gamma random variable, or  in the geometric random variable. In this context, the statistic  is called an estimator for the population parameter . This is part of inferential statistics.
1. Right now, we focus on probability. We start with a known population, modeled by a random variable  governed by a parameter ; take a sample, modeled by mutually independent random variables  each having the same distribution as ; and study the statistic
· 
· and its distribution (usually called a sampling distribution). Observe our use of capital letters when referring to random variables and lower case letters with referring to data.
1. We hope that our statistics are unbiased (a statistic’s expected value  equals the parameter  being estimated) and are precise (a statistic’s variance  is as small as possible).
1. Recall that if  and  are random variables and  and  are real numbers, then  and . If  and  are also independent, then .
1. Suppose x = c(1,2,3). Then rep(x, times = 4) returns c(1,2,3,1,2,3,1,2,3,1,2,3), and rep(x, each = 4) returns c(1,1,1,1,2,2,2,2,3,3,3,3).
Poisson Population Example
In an experiment conducted by Rutherford, Chadwick, and Ellis, a radioactive substance was observed during 2,608 time intervals of 7.5 seconds each; the number of particles reaching a counter was obtained for each period. The sample mean and variance were 3.87 and 3.68 particles, respectively, and we wondered whether this data could have arisen from a Poisson distribution with mean around 3.87. This is an inferential statistics question. Let us answer a related probability question: For a population modeled by a Poisson distribution with , what would samples of size 2,608 look like?
1. Generate a sample of size 2,608 from a Poisson random variable with parameter . Describe the sample with a histogram, mean, and variance. Repeat a few times to get some intuition about the amount of variation in the sample histograms, means, and variances.
n = 2608
lambda = 3.87
sample = tibble(x = rpois(n, lambda))
ggplot(sample, aes(x = x)) + geom_histogram(binwidth = 1, center = 0, color = "white")
[image: C31-Parameter-Estimation_files/figure-docx/unnamed-chunk-2-1.png]
sample |> summarise(mean(x), var(x))
# A tibble: 1 × 2
  `mean(x)` `var(x)`
      <dbl>    <dbl>
1      3.87     3.82
1. Simulate 10,000 samples of size 2,608 from a Poisson distribution with . Save in a tibble named samples with columns run and x.
nruns = 10000
n = 2608
lambda = 3.87
samples = tibble(
  run = rep(1:nruns, each = n),
  x = rpois(nruns*n, lambda))
Sample Mean Statistic 
Suppose  are independent identically distributed random variables each having mean  and standard deviation . Let the sample mean statistic

be an estimator for the population mean .
1. Calculate the mean for each sample in samples. Display a histogram of the sample means. Calculate the mean of the sample means, the standard deviation of the sample means, and the interval within which 95% of the sample means lie. Write a sentence summarizing the results. How might this provide an inference from the original data?
means = samples |> group_by(run) |> summarise(xbar = mean(x))
ggplot(means, aes(x = xbar)) +
  geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
[image: C31-Parameter-Estimation_files/figure-docx/unnamed-chunk-5-1.png]
means |> summarise(
  mean = mean(xbar),
  sd = sd(xbar),
  lo = quantile(xbar, 0.025),
  hi = quantile(xbar, 0.975)
)
# A tibble: 1 × 4
   mean     sd    lo    hi
  <dbl>  <dbl> <dbl> <dbl>
1  3.87 0.0390  3.79  3.95
The distribution of sample means looks bell shaped with a mean of 3.87, standard deviation of 0.04, and a 95% coverage interval of 3.79 to 3.95.
1. Determine the mean, variance, standard deviation, and distribution of the random variable  in general. Apply these results when each  is . How is this related to the previous exercise?
The mean of  is

The variance of  (using independence) is

The standard deviation is

The Central Limit Theorem tells us that the distribution of  is approximately normal for sufficiently large .
For  and ,  and , and the central 95% of the sample means should be in 3.87 ± 0.08 particles per period. This matches what we found in the previous exercise because that was a simulation of .
means |> summarise(
  smean = mean(xbar),
  tmean = lambda,
  ssd = sd(xbar),
  tsd = sqrt(lambda/n)
)
# A tibble: 1 × 4
  smean tmean    ssd    tsd
  <dbl> <dbl>  <dbl>  <dbl>
1  3.87  3.87 0.0390 0.0385
ggplot(means, aes(x = xbar)) +
  geom_histogram(aes(y = after_stat(density))) +
  geom_function(fun = dnorm, args = list(mean = lambda, sd = sqrt(lambda/n)), color = "red", linewidth = 2)
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
[image: C31-Parameter-Estimation_files/figure-docx/unnamed-chunk-8-1.png]
1. What do the results from the previous exercise tell us about the use of the statistic  to estimate the parameter  of a population?
Sample Variance Statistic 
Suppose  are independent identically distributed random variables each having mean  and standard deviation . Let the sample variance statistic

be an estimate for the population variance .
1. Calculate the variance for each sample in samples. Display a histogram of the sample variances. Calculate the mean of the sample variances, the standard deviation of the sample variances, and the interval within which 95% of the sample variances lie. Write a sentence summarizing the results. How might this provide an inference from the original data?
vars = samples |> group_by(run) |> summarise(s2 = var(x))
ggplot(vars, aes(x = s2)) +
  geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
[image: C31-Parameter-Estimation_files/figure-docx/unnamed-chunk-10-1.png]
vars |> summarise(
  mean = mean(s2),
  sd = sd(s2),
  lo = quantile(s2, 0.025),
  hi = quantile(s2, 0.975)
)
# A tibble: 1 × 4
   mean    sd    lo    hi
  <dbl> <dbl> <dbl> <dbl>
1  3.87 0.113  3.65  4.09
1. Determine the mean, variance, standard deviation, and distribution of the random variable . Apply these results when each  is . How is this related to the previous exercise?
Consider

Thus, the mean of  is
.
It can be shown (https://math.stackexchange.com/questions/72975/variance-of-sample-variance) that

where  is the fourth central moment of .
A corollary to the Central Limit Theorem is that the distribution of  is approximately normal for large sample sizes (https://math.stackexchange.com/questions/2325500/central-limit-theorem-for-the-variance#mjx-eqn-2).
For  (the s values arise from our simulation and the t values arise from the above theory):
vars |> summarise(
  smean = mean(s2),
  tmean = lambda,
  ssd = sd(s2),
  tsd = sqrt((3*lambda^2+lambda)/n - lambda^2*(n-3)/n/(n-1))
)
# A tibble: 1 × 4
  smean tmean   ssd   tsd
  <dbl> <dbl> <dbl> <dbl>
1  3.87  3.87 0.113 0.114
The histogram is of the simulated  and the red curve is of the theoretical pdf for :
ggplot(vars, aes(x = s2)) +
  geom_histogram(aes(y = after_stat(density))) +
  geom_function(fun = dnorm, args = list(mean = lambda, sd = sqrt((3*lambda^2+lambda)/n - lambda^2*(n-3)/n/(n-1))), color = "red", linewidth = 2)
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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1. What do the results from the previous exercise tell us about the use of the statistic  to estimate the parameter  of a population?
1. What do the results from exercises 4 and 7 tell us about the use of the statistics  and  to estimate the parameter  of a Poisson population?
Finding Estimators
Two approaches to finding a statistic to estimate a parameter are the method of moments and maximizing likelihood. We illustrate these approaches via some examples.
1. Find the method of moments estimators for the mean  and variance  of a normal population.
The central moments of a random variable  are  and  for positive integers .
If  is randomly selecting an element from a list of data , then  and .
If  is a normal distribution with mean  and standard deviation , then  and .
Matching the first two central moments yields  and .
Note that  is the sample mean but  is the natural but biased  times the sample variance. Note also that neither  nor  is an unbiased estimator for .
1. Find the method of moments estimator for the mean  of a Poisson population.
If  is a Poisson distribution with mean , then . Matching the first central moments yields .
1. Find the maximum likelihood estimator for the mean  of a Poisson population.
Our population  has a pdf of the form  for  where  is unknown. We obtain data  from a sample of the population and endeavor to estimate the parameter . The probability (called likelihood in this context) that a sample from the given population would be the same as our actual data is
.
We want to choose our parameter  so as to maximize the likelihood . It is often easier to maximize the log likelihood:

A necessary condition to maximize  comes from calculus:

The unique solution is
.
It is easy to verify with a first derivative test that this is a global maximum.
Gamma Population
Suppose we have a gamma population with unknown parameters  and . We obtain a sample  and want to estimate the population parameters.
1. Find the method of moments estimators.
Recall from C25 Important Random Variables that for , the mean is  and the variance is . By solving these two equations for the parameters, we obtain  and . Thus, the method of moments estimators are  and  where .
1. Find the maximum likelihood estimators.
Recall from C25 Important Random Variables that for , the pdf is  for  where  is a generalization of . Thus, the log likelihood function is

Necessary conditions to maximize  are

and
.
The second equation yields

but the first equation is not very helpful symbolically. We must find a numerical solution for any given list of data.
1. Suppose the data given below came from a gamma population. Find the method of moments estimators and maximum likelihood estimators. Compare the empirical cdf and the two theoretical cdfs in a single plot.
actual = tibble(x = c(49.2,53.9,50.0,44.5,42.2,42.3,32.3,31.3,60.9,47.5))
moments = actual |> summarize(
  n = n(),
  xbar = mean(x),
  v = (n-1)/n * var(x),
  alpha = xbar^2 / v,
  beta = v / xbar
)
moments
# A tibble: 1 × 5
      n  xbar     v alpha  beta
  <int> <dbl> <dbl> <dbl> <dbl>
1    10  45.4  74.4  27.7  1.64
likelihood = actual |> summarize(
  n = n(),
  xbar = mean(x),
  v = (n-1)/n * var(x),
  alpha = uniroot(function(a) -n*digamma(a) - n*log(xbar/a) + sum(log(x)), c(10, 40))$root,
  beta = xbar / alpha
)
likelihood
# A tibble: 1 × 5
      n  xbar     v alpha  beta
  <int> <dbl> <dbl> <dbl> <dbl>
1    10  45.4  74.4  26.4  1.72
ggplot(actual, aes(x = x)) +
  stat_ecdf() +
  geom_function(fun = pgamma, args = list(shape = moments$alpha, scale = moments$beta), xlim = c(29, 63), color = "red") +
  geom_function(fun = pgamma, args = list(shape = likelihood$alpha, scale = likelihood$beta), xlim = c(29, 63), color = "blue")
[image: C31-Parameter-Estimation_files/figure-docx/unnamed-chunk-17-1.png]
It appears that the data could have come from a gamma population and that the two theoretical distributions are quite similar.
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