Fair Division with Budget Constraints
Elizabeth Adenegan
Department of Mathematics

Goshen College

1700 S. Main St.

Goshen, IN 46526, USA

Faculty Advisor: Dr. David Housman

Abstract
Generally, a fair division problem is a situation where there are some objects that need to be distributed among a group of people, or players. In order to divide the objects, an allocation method may be used. Under some circumstances, money can help to compensate players in order to acquire objects. However, there may be cases when some players do not have enough money to meet the required compensations, thus, a different way to allocate the goods must be found. This paper explores the First Price Auction when there are several divisible and homogeneous objects and given money allowances for each player. A first price auction allocation is shown to be efficient.
Keywords: Fair Division, Allocation, Value, Optimal, Feasible, Efficiency
1. The Problem
A fair division problem consists of dividing a set of goods and trading money among a number of people, which are called players. In fair division, the purpose is to distribute goods and money in such a way that each player receives a “fair share” of the set of goods and money. More formally, there is a set of players N which consists of players i, where i = 1, 2, ..., n. The set of goods L consists of goods j, where j = 1,2,,.., l. Each player i has placed a monetary value, aij, on object j such that aij ≥ 0, which means the valuation aij of the ith player for the jth good is nonnegative. In this research, only homogenous and divisible goods are taken into account. Furthermore, there is the assumption that each player is willing to give or receive money to help compensate for the allocation of goods; however, player i is not willing to give more than ci ≥ 0, where ci could be as high as ∞.
An allocation will be represented by (x, r). The components that comprise an allocation are xij (the fraction that player i receives for the jth good) and ri (the amount of money spent). When ri is positive, player i is paying money; in contrast, money is given to player i when the ri is negative. Thus, an allocation, (x, r), is defined by the following constraints:

· xij ≥ 0 , each fraction the player i receives should be nonnegative;
·
[image: image1.wmf]1

1

n

ij

i

x

=

=

å

 for all
[image: image2.wmf]jL

Î

, every good j has to be totally distributed among the players;

· ri ≤ ci , the budget constraint that limits how much player i can spend;

·
[image: image3.wmf]0

1

=

å

=

n

i

i

r

, profit made should be distributed back among the players

The value of each player’s allocation, vi(x, r), is represented by the following utility function,

[image: image4.wmf]i

l

j

ij

ij

i

r

x

a

r

x

v

-

=

å

=

1

)

,

(

2. First-Price Auction Method
In the First-Price Auction Method, the goods are sold to the highest bidder granted that there is no monetary constraint. In other words, ci = ∞ for each player i, with i = 1, 2,…, n. For each object j, the player who placed the highest bid must place the money into a pot, which is later divided evenly by n, the number of players. The main goal of the first-price auction method is to give all of the players an equal allocation. That is, v1 = v2 = … = vn. In the example below, we will approach the problem where the players have an infinite amount of money to spend.
Example 1:
Assume that there are three players, n = 3: Alex, Beth and Chris. Alex is denoted as player 1, i = 1, Beth as player 2, i = 2, and Chris as player 3, i = 3. We have the following homogeneous and divisible goods, l = 3, to be distributed: a cheesecake, a pizza, and pasta. Labeling the goods in the same way as the players it would be j = 1, j = 2, and j = 3, respectively. Each player i gives a valuation on each of the l goods j, which is shown in the table below
Table 2.1
	aij (xij)
	Cheesecake (j =1)
	Pizza

(j =2)
	Pasta

(j =3)
	ci (ri)

	Alex (i =1)
	5(0)
	22(1)
	19(0)
	∞(1)

	 Beth(i =2)
	13(1)
	6(0)
	3(0)
	∞ (-3)

	Chris (i =3)
	4(0)
	18(0)
	25(1)
	∞ (2)

Recall that there is an infinite amount of money for every player. In this situation, each good should be sold to the highest bidder: the pizza goes to Alex (x21 = 1), the cheesecake to Beth (x12 = 1), and the pasta goes to Chris (x33 = 1). This allocation gives a profit of 22 + 13 + 25 = 60, which is divided equally and given back to each of the players. Therefore, r = [22 – 60/3 , 13 – 60/3, 25 – 60/3] = [2, -7, 5]. The values of the bundles are calculated by using the utility function from the previous section. The valuations for each player are as follows:
v1 = a11 x11 + a12 x12 + a13 x13 – r1 = 22*1 – 2 = 20
v2 = a21 x21 + a22 x22 + a23 x23 – r2 = 13*1 – (- 7) = 20
v3 = a31 x31 + a32 x32 + a33 x33 – r3 = 25*1 – 5 = 20
From this example player 1, Beth, is the only one that receives money while Alex and Chris have to spend money. What if the budget constraint for this example would be c = [1, 2, 2]. In other words, what if Alex has only 1 unit while Chris do not have more than 2 units each to pay back?
Now, the players have given more preferences. Each player has stated a spending allowance, c = [1, 2, 2]. Thus, a new method has to be used. The new method is to choose an optimal allocation, (x, r), to the following linear program:
 Maximize λ subject to

· vi(x, r) = λ, i = 1, 2,…, n

· (x, r) is allocation
(LP)
The table below represents an allocation of the goods and money according to the preferences of the players.
Table 2.2
	aij (xij)
	Cheesecake (j =1)
	Pizza

(j =2)
	Pasta

(j =3)
	ci (ri)

	Alex (i =1)
	5(0)
	22(0.7)
	19(0)
	1(-1/15)

	 Beth(i =2)
	13(1)
	6(0.3)
	3(0.4)
	2(8/15)

	Chris (i =3)
	4(0)
	18(0)
	25(0.6)
	2(-7/15)

When the values for the players are calculated, the values yielded are
v1 = a11 x11 + a12 x12 + a13 x13 + m1 = 5*0 + 22*(0.7) + 19*0 – (-1/15) = 232/15

v2 = a21 x21 + a22 x22 + a23 x23 + m2 = 13*1 + 6*(0.3) + 3*(0.4) – (8/15) = 232/15

v3 = a31 x31 + a32 x32 + a33 x33 + m3 = 4*0 + 18*0 + 25*(0.6) – (-7/15) = 232/15.
Although all of the values are equal and are within the limits of the allowances, these allocations are not optimal. The allocation in table 2.2 would be feasible. A feasible allocation is an allocation (x,r) that satisfies the constraints of a linear program. However, a feasible allocation need not be an optimal allocation. The next allocation (Table 2.3) would be the optimal allocation since it adheres to the linear program. Table 2.1 would be neither a feasible allocation (goes above allowances) nor an optimal allocation (does not follow constraints of linear program).
Each of the player’s allocation under this new budget constraint, c = [1, 2, 2], would give the following results: Beth would still get the cheesecake (j = 1). Alex cannot pay 2 units since he only has 1 unit. Likewise, Chris, who also cannot pay the 5 units, has only 2 units that he can spend. Thus, neither player can be awarded the entire item, which he desires. In the table below are the allocations under the constraints.

Table 2.3
	aij (xij)
	Cheesecake (j =1)
	Pizza

(j =2)
	Pasta

(j =3)
	ci (ri)

	Alex (i =1)
	5(0)
	22(278/407)
	19(83/407)
	1(1)

	 Beth(i =2)
	13(1)
	6(129/407)
	3(0)
	2(-3)

	Chris (i =3)
	4(0)
	18(0)
	25(324/407)
	2(2)

The values in parenthesis are the allocation values. Thus, Alex would only receive 278/407 of the pizza (x12 = 278/407) while Chris receives 324/407 of the pasta (x33 = 324/407). The remainder of the pizza is sold to Beth (x22 = 129/407) and the rest of the pasta is given to Alex (x13 = 83/407). The allocation of goods yields a profit of 13 + 6*(129/407) + 22*(278/407) + 19*(83/407) + 25*(324/407) = 21858/407 ≈ 53.7052, which should be divided equally and given back to each of the players. When 21858/407 is divided by 3, the value of each player’s allocation is yielded. This value is 7286/407. Therefore, r = [(22*(278/407) + 19*(83/407)) – (7286/407), (13 + 6*(129/407)) – (7286/407), (25 *(324/407) – (7286/407))] = [1, -3, 2]. The new valuations for the allocations are the following:
v1 = a11 x11 + a12 x12 + a13 x13 + m1 = 5*0 + 22*(278/407) + 19*(83/407) – 1 = 7286/407
v2 = a21 x21 + a22 x22 + a23 x23 + m2 = 13*1 + 6*(129/407) + 3*0 – (-3) = 7286/407
v3 = a31 x31 + a32 x32 + a33 x33 + m3 = 4*0 + 18*0 + 25*(324/407) – 2= 7286/407
3. Efficiency
An allocation is efficient if there is no other allocation that is strictly better for at least one player and as good for all the others. An allocation, (y, s) that is better than an allocation (x, r), if

[image: image5.wmf]

r)

(x,

 v

s)

(y,

v

i

i

³

for all players i and

[image: image6.wmf]

r)

(x,

 v

s)

(y,

v

k

k

>

for some player k. If this situation is possible, then the allocation, (x, r), is not efficient.
Theorem: A first price allocation is an efficient allocation.

Proof. Suppose an allocation (x,r) is an efficient allocation and λ is the value for all players i, i = 1, 2,…,n. We will show that (x,r) is efficient by doing a proof by contradiction. Thus, let’s assume that (x,r) is not efficient. Therefore, we have an allocation (y,s) that is better than (x,r). Hence, we have a player k such that

[image: image7.wmf]

r)

(x,

 v

s)

(y,

v

k

k

>

and for players i, when i ≠ k,

[image: image8.wmf]

r)

(x,

 v

s)

(y,

v

i

i

³

.

If vi(y,s) = vk(y,s) for all players i ∈N, then (y,s) is a feasible solution to (LP). Thus it would satisfy vi(y,s) > λ, which contradicts (x,r) being an optimal solution. If vi(y,s) ≠ vk(y,s), then perform the following procedure to obtain some new allocation.
Let L be the set of all players with the lowest values. Let k be the player with the highest value. If sk < ck, then ε > 0 money should be given to each player in set L and |L| ε subtracted from player k. Continue to do so until either (1) the players in set L have values equal to the value of some player that is not in set L, at which L needs to be redefined to include the new player, or (2) player k has spent sk = ck. If (1) occurs, then repeat the process. When (2) happens, player k’s is still the larger than the players in set L. For that reason, player k must possess some positive amount of an object j. Have player k distribute object j such that ε/ aij is given to each player in set L. Continue to distribute object j until (3) player k no longer has any of object j or (4) players in set L have values equal to the value of player k. If (3) occurs, then choose another object to distribute. Since there is a finite number of object, eventually L = N. Consequently,

[image: image9.wmf]

s)

(y,

 v

s)

(y,

v

i

k

=

for all players i∈N.
Furthermore, the allocation (y,s) is a feasible solution to (LP). However,

[image: image10.wmf]l

s)

(y,

v

i

>

.

Therefore, (x,r) is not an optimal allocation, which is the contradiction. In conclusion, a first price allocation is an efficient allocation.

(
4. Maple Calculations
4.1.1 no budget constraint applied
>firstprice:=

proc(n,l,A)

 local constraints,v,x,r,lambda;

 constraints :={

 seq(v[i]=sum(A[i,j]*x[i,j],j=1..l)-r[i],i=1..n),

 seq(seq(x[i,j]>=0,j=1..l),i=1..n),

 seq(sum(x[i,j],i=1..n)=1,j=1..l),

 sum(r[i],i=1..n)=0,

 seq(v[i]=lambda,i=1..n)};

 maximize(lambda,constraints);

end proc:
> n:=3;

l:=3;

a:=[[5,22,19],[13,6,3],[4,18,25]];
[image: image11.wmf]n

 :=

3

[image: image12.wmf]l

 :=

3

[image: image13.wmf]a

 :=

5

,

22

,

19

[

]

,

13

,

6

,

3

[

]

,

4

,

18

,

25

[

]

[

]

> firstprice(n,l,a);
[image: image14.wmf]{

x

2

,

1

 =

1

,

x

3

,

3

 =

1

,

r

3

 =

5

,

x

1

,

3

 =

0

,

x

1

,

1

 =

0

,

x

2

,

2

 =

0

,

x

2

,

3

 =

0

,

x

3

,

1

 =

0

,

x

3

,

2

 =

0

,

x

1

,

2

 =

1

,

l

 =

20

,

v

1

 =

20

,

[image: image15.wmf]r

1

 =

2

,

v

2

 =

20

,

r

2

 =

-7

,

v

3

 =

20

}

4.1.2 with budget constraint
>firstpricebudget:=

proc(n,l,A,c)

 local constraints,v,x,r,lambda;

 constraints:={

 seq(v[i]=sum(A[i,j]*x[i,j],j=1..l)-r[i],i=1..n),

 seq(v[i]=lambda,i=1..n),

 seq(seq(x[i,j]>=0,j=1..l),i=1..n),

 seq(sum(x[i,j],i=1..n)=1,j=1..l),

 seq(r[i]<=c[i],i=1..n),

 sum(r[i],i=1..n)=0};

maximize(lambda,constraints);

end proc:
> n:=3;

l:=3;

A:=[[5,22,19],[13,6,3],[4,18,25]];

c:=[1,2,2];
[image: image16.wmf]n

 :=

3

[image: image17.wmf]l

 :=

3

[image: image18.wmf]A

 :=

5

,

22

,

19

[

]

,

13

,

6

,

3

[

]

,

4

,

18

,

25

[

]

[

]

[image: image19.wmf]c

 :=

1

,

2

,

2

[

]

> firstpricebudget(n,l,A,c);
[image: image20.wmf]ì

í

î

v

1

 =

7286

407

,

v

3

 =

7286

407

,

v

2

 =

7286

407

,

x

2

,

3

 =

0

,

x

1

,

1

 =

0

,

x

3

,

1

 =

0

,

x

3

,

3

 =

324

407

,

x

1

,

3

 =

83

407

,

x

1

,

2

 =

278

407

,

[image: image21.wmf]x

2

,

2

 =

129

407

,

x

2

,

1

 =

1

,

x

3

,

2

 =

0

,

r

2

 =

-3

,

l

 =

7286

407

,

r

3

 =

2

,

r

1

 =

1

ü

ý

þ

5. Conclusion
The purpose of the first price auction method is to give all the players an equal yet maximized value for their allocation based on their preferences. Through the proof, any allocation yielded by this method is an efficient allocation.
6. Acknowledgments
I would like to express my sincere appreciation to my advisor, Dr. David Housman, for his guidance and commitment through this research experience, and to the Maple Scholars Program that have made this research possible. Funding for this work was obtained through the Mathematical Association of America’s Strengthening Underrepresented Minority Mathematics Achievement Program, funded by the National Security Agency and the National Science Foundation.
7. Related Sources

Brams, Steven J., Taylor, Alan D. (1996). Fair Division: From cake-cutting to dispute resolution. New York: Cambridge University Press, 1996.
Martinez, Ulises. (2004). “Fair Division of Divisible Objects – Analysis of Allocation Methods with the Budget Constraint.”

PAGE
6

_1184439748.unknown

_1184523827.unknown

_1184610436.unknown

_1184610652.unknown

_1184523571.unknown

_1153302179.unknown

_1184429008.unknown

_1153302115.unknown

