Properties of Simple Games

John Baldan

REU Program in Cooperative Game Theory
August 13, 1992

s

£



Simple games are the class of cooperative games in
characteristic function form for which v(S)=1 or v(S)=0 for all
coalitions S of the set of players N. In words, every coalition is
either "winning" (all-powerful) or "losing" (ineffectual). Simple
games can be used to model the process of voting in parliamentary
or other political bodies. When a motion is proposed, the
coalition S that votes in favor of the proposal either carries
enough weight under the existing voting scheme to enable the
proposal to pass ( v(S)=1 ) or it does not ( v(S)=0 ).

Formally, a simpl€ game is a pair (N, W) where N={1,2,...,n}
is a set of players and W is the set of coalitions (subsets of N)
which are winning. There are three conditions on W:

1. NeW
2. o¢W
3. If TeWw and SoT then Sew.

Each condition is necessary if the simple game is to adequately
model real-life voting: unanimity for or against a proposal is
decisive; and adding players to a winning coalition (or removing
them from a losing coalition) should not affect the outcome of a
vote.

A simple game can be rgpresented more compactly as (N, M)
where M is the set of minimal winning coalitions. A minimal
winning coalition is a winning coalition which contains no proper
subset that is also winning. Thus the set M of minimal winning
coalitions of a game does not contain two coalitions, one of which
is a subset of the other. Such a set of sets is known as a
clutter. One can easily derive W by appending players to each
element of M. From now on, we will represent simple games with the
(N, M) notation.

An interesting question to consider is: how many distinct
sets of voting rules are possible for a voting body of n players?
The set M uniquely determines a set of voting rules: for any
coalition; it assigns the result "winning" or "losing". How many
sets M are there on n players? To simplify matters, we only
consider simple games of n players with no "dummies"; i.e., where
each player has some say in the outcome of a vote. Thus every
player must appear in at 1least one of* the minimal winning
coalitions. §

When n=1, M={A) (where A is the only player) is the only
possibility. When n=2, M=(AB} or M = (A,B} are the two
possibilities (M= (A) is not acceptable because B i's a dummy).
When n=3, M=(A,B,C}, M= {AB,C}, M={AB,AC}, M={(AB,AC,BC) and M={ABC)
are the five simple games. Shapley [1] determined that there are
also 20 4-+player simple games, and proceeded to list all simple
games of 4 or fewer players. He announced as well that there are
179 b-player simple games, which he later revised to 180. [2]
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A pmper—and—pencil algorithm for enumerating all n-player
simple games follows. Let us impose an ordering within the sets M

so that we may count them more efficiently. Within M, 1list
coalitions in order of increasing size, and within size by
alphabetical order. M is said to be in reduced form if no

permutation of the players yields an alternate representation of M
which preceeds M in the above ordering. Since we do not want to
count duplicate sets of minimal winning coalitions, we must make
sure that every set M is reduced before it is counted.

The algorithm is a tree. Off the origin node are the possible
first coalitions (A}, (aB)}, {ABC), {ABCD} and {ABCDE}. Off node

{A} are possible second coalitions (B}, {BC), {(BCD}, and {BCDE},

etc. Notice that we are culling out those coalitions whose
addition would be identical to the ones mentioned above after a
simple permutation of the players. For example, we needn’t

consider sets M beginning (A,B,...} and {A,C,...} since a swapping
of players B and C (which would become necessary to put the latter
set in reduced form) shows the two sets to be identical. Only
nodes in which all players of N appear, and which is in reduced
form are then counted. It is possible to add coalitions to a set
in which all players already appear, so we must branch off all
nodes wherever possible. Following is an illustration of the
algorithm at work for the case n=5:

Origin Node
A AB ABC ABCD ABCDE
{A,...}
B BC BCD BCDE

(A,B,...}
C CD CDE
(A, B,.C,...)
D DE
(A,B,C,D,...}
E
{A,B,C,D,E}
{A,B,C,DE}
(A,B,CD, ...}
CE |
{A,B,CD,CE)
{A,B,CD,CE,DE)} i
{A,B,CDE)
(A,BC,...}

BD DE BDE R !
(A,BC,BD, ...}
BE CD CE CDE
{A,BC,BD,BE})
CD CDE
{A,BC,BD,BE;CD}
CE k /
(A,BC,BD,BE,CD,CE)
DE
{A,BC,BD, BE,CD,CE, PE)
{A,BC,BD,BE,CDE} i
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{A,BC,BD,CD, ...}
CE NOT IN REDUCED FORM
{A,BC,BD,CE)}

DE
{A,BC,BD,CE,DE)
{A,BC,BD,CDE}
(A,BC,DE)
{A,BC,BDE}
CDE
{aA,BC,BDE,CDE)}
{A,BCD,...)
BCE
{A,BCD,BCE}
BDE
{A,BCD,BCE,BDE)
CDE
{A,BCD, BCE,BDE, CDE})
{A,BCDE} :

These are the first twenty 5-player games. They can be placed
in one-to-one correspondence with the twenty 4-player games on the
players B,C,D and E by appending player A with "veto-power".

To describe the algorithm more precisely:

1.

Begin at the origin node, where no coalitions have yet
been specified. Think of each node as representing a
(partial or complete) set of minimal winning coalitions
in reduced form. The origin node represents the empty
set.

From each node, trace all branches. A branch off a node
is another (partial or complete) set of minimal winning
coalitions identical to its parent except for an
additional coalition. Since the coalitions of M are
ordered, one need only consider those coalitions that are
subsequent (equal-sized to the last coalition in M and
alphabetically subsequent, or larger-sized) to those
already in M.

At each node M which contains all players, check to see
if M is in reduced form. Determining whether M is in
reduced form sometimes requires more than a casual
glance. In theory, one can determine the reduced form of
M by attempting all permutations of the players in M and
choosing the resulting set whose ordering is smallest.
In an n-player game this involves inspecting n! sets.
However, the following method quickly resolves the issue
for almost all five-player games. Using
{AB,AC,BD,CD,ADE,BCE} as an example:

1. Consider the coalitions of smallest size.
Count the numbér of appearances for each
player and list-them from largest to smallest.
For the example, this would be 22220.

3

£



Begin listing possible two-player coalitions
from alphabetically small to large -- AB uses
up one A and one B, leaving

112 2 0. AC leaves 0 1 1 2 0. BC would
come next, but would leave 0 0 0 2 0, which is
unacceptable, because DD is not a coalition.
So BD comes next instead, leaving the last
two-player coalition to be CD.

Since {AB,AC,BC,BD} is indeed the subset of 2-
player coalitions in our example, we know that
so far it is in reduced form. If we had
obtained a different subset of two-player
coalitions, it would not necessarily have
indicated a non-reduced form, however.
Another test is required. (An example:
M,={ABC,ABD,ABE,ACD,CDE} and
M,={ABC,ABD,ACE,ADE,BCD} are distinctly
different minimal winning sets, though they
both have the player distribution 4-3-3-3-2,
which by the technique just mentioned yields
representation M,. But in M, two players
appear together in three coalitions, where the
same is not true in M,. So M, and M, are
indeed distinct.)

Now proceed to the coalitions of next larger
size, keeping in mind which players are
"isomorphic" from preceeding sizes. After the
coalitions of size two, players A, B, C, and D
are all names for the same type of player - a
player who is connected to two other players

in a four player subset. For two player
coalitions, a graph is usually helpful.

A B

C D

Player E, on the other hand, is an essentially
different type of player, - one who does not
appear in any two-player winning coalition.
Once the fundamental types of players have
been distinguished, we use this information in
examining the coalitions of next larger size.
In our example, there are two three-player
coalitions, each of which contains two players
of "Type I" and player E. A little reflection
reveals that {ADE,BCE} is indeed the best we
can do lexicographically, since ACE and BDE
are invalid because ,they contain winning
proper subsets. Thus our example is indeed in
reduced form.



If M is in reduced form, add it to the list of simple
games already discovered. If not, disregard the rest of
that branch.

4. Since the game under consideration is finite, both the
number and the length of branches is finite. Once the
entire tree is sketched, all sets M will have been
discovered.

Note that in the illustration of the algorithm above, I did
not test all branches from every node. For example, at
{A,BC,BD,BE} I considered the branch which adds CD, but not those
which add CE or DE for the simple reason that C,D, and E are
different names for interchangeable elements of {(A,BC,BD,BE}. A,
being the only player who can win alone, has a distinct character.
B is the only other player who can win in any two-player coalition.
C,D, and E are all in the same position - needing the support of A
or B to win. This and similar reasoning becomes important as the
sets M grow in complexity.

Using this algorithm, it is possible to list the 180
5-player simple games, I owe thanks to David Housman, who
finalized this list by writing a computer program to handle the 5-
player case. The gameés are designated by their sets of minimal
winning coalitions.

1 A,B,C,D,E

2 A,B,C,DE

3 A,B,CD,CE

4 A,B,CD,CE,DE

5 A,B,CDE

6 A,BC,BD,BE

7 A,BC,BD,BE,CD

8 A,BC,BD,BE,CD,CE

9 A,BC,BD,BE,CD,CE,DE
10 A,BC,BD,BE,CDE
11 A,BC,BD,CDE

12 A,BC,BD,CE

13 A,BC,BD,CE,DE

14 A,BC,BDE

15 A,BC,BDE,CDE

16 A,BC,DE 1

17 A,BCD,BCE

18 A,BCD,BCE,BDE

19 A,BCD,BCE,BDE, CDE 1
20 A,BCDE

21 AB,AC,AD,AE

22 AB,AC,AD,AE, BC
23 AB,AC,AD,AE,BC,BD

24 AB,AC,AD,AE,BC,BD,BE X

25 AB,AC,AD,AE,BC,BD,BE,CD “ j
26 AB,AC,AD,AE,BC,BD,BE,CD,CE ‘
27 AB,AC,AD,AE,BC,BD,BE,CD,CE,DE

28 AB,AC,AD,AE,BC,BD,BE,CDE
29 AB,AC,AD,AE,BC,BD,CD
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30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

AB,AC,AD,AE,BC,BD, CE
AB,AC,AD,AE,BC,BD,CE,DE
AB,AC,AD,AE,BC,BD,CDE
AB,AC,AD,AE,BC,BDE
AB,AC,AD,AE,BC,BDE, CDE
AB,AC,AD,AE,BC,DE
AB,AC,AD,AE,BCD
AB,AC,AD,AE,BCD,BCE
AB,AC,AD,AE,BCD,BCE,BDE
AB,AC,AD,AE,BCD,BCE,BDE, CDE
AB,AC,AD,AE, BCDE
AB,AC,AD,BC,BD,CDE
AB,AC,AD,BC,BD,CE
AB,AC,AD,BC,BD,CE,DE
AB,AC,AD,BC,BDE
AB,AC,AD,BC,BDE, CDE
AB,AC,AD,BC,BE
AB,AC,AD,BC,BE, CDE
AB,AC,AD,BC,BE,DE
AB,AC,AD,BC,DE
AB,AC,AD,BCD,BCD
AB,AC,AD,BCD,BCE, BDE
AB,AC,AD,BCD,BCE, BDE, CDE
AB,AC,AD,BCDE
AB,AC,AD,BCE
AB,AC,AD,BCE, BDE
AB,AC,AD,BCE,BDE, CDE
AB,AC,AD,BE
AB,AC,AD,BE,BCD
AB,AC,AD,BE,BCD, CDE
AB,AC,AD,BE,CDE
AB,AC,AD,BE,CE

AB,AC,AD, BE,CE,BCD
AB,AC,AD,BE,CE,DE
AB,AC,AD,BE,CE,DE, BCD
AB,AC,ADE

AB,AC,ADE,BCD
AB,AC,ADE,BCD, BCE
AB,AC,ADE,BCD, BCE, BDE
AB,AC,ADE,BCD,BCE,BDE, CDE
AB,AC,ADE,BCD, BDE
AB,AC,ADE,BCD,BDE, CDE
AB,AC,ADE, BCDE
AB,AC,ADE,BDE ~
AB,AC,ADE,BDE, CDE
AB,AC,BC,ADE
AB,AC,BC,ADE, BDE
AB,AC,BC,ADE, BDE, CDE
AB,AC,BC,DE
AB,AC,BCD,BCE j
AB,AC,BCD, BCE, BDE
AB,AC,BCD,BCE,BDE, CDE
AB,AC,BCD,BDE 7
AB,AC,BCD,BDE,CDE
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84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

- 101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

AB,AC,BCDE

AB,AC,BD,ADE
AB,AC,BD,ADE,BCE
AB,AC,BD,ADE,BCE,CDE
AB,AC,BD,ADE,CDE
AB,AC,BD,CD,ADE
AB,AC,BD,CD,ADE,BCE
AB,AC,BD,CDE

AB,AC,BD,CE
AB,AC,BD,CE,ADE
AB,AC,BD,CE,DE

AB,AC,BDE

AB,AC,BDE,CDE

AB,AC,DE

AB,AC,DE,BCD
AB,AC,DE,BCD,BCE
AB,ACD,ACE

AB,ACD,ACE,ADE
AB,ACD,ACE,ADE,BCD
AB,ACD,ACE,ADE,BCD,BCE
AB,ACD,ACE,ADE,BCD,BCE, BDE
AB,ACD,ACE,ADE,BCD,BCE, BDE,CDE
AB,ACD,ACE,ADE,BCD,BCE,CDE
AB,ACD,ACE,ADE,BCD,CDE
AB,ACD,ACE,ADE, BCDE
AB,ACD,ACE,ADE,CDE
AB,ACD,ACE,BCD
AB,ACD,ACE,BCD,BCE
AB,ACD,ACE,BCD, BCE, CDE
AB,ACD,ACE,BCD,BDE
AB,ACD,ACE,BCD, BDE,CDE
AB,ACD,ACE,BCD,CDE
AB,ACD,ACE,BCDE
AB,ACD,ACE,BDE
AB,ACD,ACE, BDE, CDE
AB,ACD,ACE,CDE
AB,ACD,ACE,CDE

AB,ACD,BCDE

AB,ACD,BCE

AB,ACD,BCE, CDE

AB,ACD,CDE

AB,ACDE

AB,ACDE, BCDE

AB,CD,ACE

AB,CD,ACE,ADE
AB,CD,ACE,ADE,BCE
AB,CD,ACE,ADE,BCE, BDE
AB,CD,ACE,BDE

AB,CDE "
ABC,ABD,ABE |
ABC,ABD,ABE,ACD
ABC,ABD,ABE,ACD,ACE
ABC,ABD,ABE,ACD,ACE, ADE
ABC,ARD,ABE,ACD,ACE, ADE, BCD
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138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

ABC,ABD,ABE,ACD,ACE, ADE, BCD, BCE

ABC,ABD,ABE,ACD,ACE,ADE,BCD, BCE, BDE
ABC,ABD,ABE,ACD,ACE,ADE, BCD, BCE, BDE, CDE

ABC,ABD,ABE,ACD,ACE,ADE, BCDE

ABC,ABD,ABE,ACD,ACE,BCD

ABC,ABD,ABE,ACD,ACE,BCD, BCE
ABC,ABD,ABE,ACD,ACE, BCD, BDE
ABC,ABD,ABE,ACD,ACE, BCD,BDE, CDE

ABC,ABD,ABE,ACD,ACE, BCDE
ABC,ABD,ABE,ACD,ACE, BDE

ABC,ABD,ABE,ACD,ACE, BDE, CDE

ABC,ABD,ABE,ACD,BCD
ABC,ABD,ABE,ACD,BCD,CDE
ABC,ABD,ABE,ACD, BCDE
ABC,ABD,ABE,ACD, BCE
ABC,ABD,ABE,ACD,BCE,CDE
ABC,ABD,ABE,ACD,CDE
ABC,ABD,ABE,ACDE
ABC,ABD,ABE,ACDE, BCDE
ABC,ABD,ABE,CDE
ABC,ABD,ACD,BCD
ABC,ABD,ACD,BCE
ABC,ABD,ACD,BCE, BDE
ABC,ABD,ACD,BCE,BDE,CDE
ABC,ABD,ACD,BCDE
ABC,ABD,ACE,ADE
ABC,ABD,ACE,ADE, BCDE
ABC,ABD,ACE,BCDE
ABC,ABD,ACE, BDE
ABC,ABD,ACE,BDE,CDE
ABC,ABD,ACDE
ABC,ABD,ACDE, BCDE
ABC,ABD,CDE

ABC,ABDE

ABC,ABDE,ACDE
ABC,ABDE,ACDE, BCDE
ABC,ADE

ABC,ADE, BCDE

ABCD, ABCE

ABCD,ABCE, ABDE

ABCD, ABCE,ABDE,ACDE
ABCD,ABCE, ABDE, ACDE, BCDE
ABCDE

Power Indices

a voting body to influence a vote.
as weighted majority games provides a couple of examples. i A
welghted majority game is a simple game (N,W) where W is directly
obtainable from the rule [q;w,, W,,...W,], where player i has number
of votes w; and q is the quota of votes needed to win; i. e.,

Sew iff Yy w;xqg

ies

g

e
S

-

Intuitively, a power index measures the ability of a player in
The class of simple games known



Clearly, in an institution of majority rule such as the Supreme
Court, each Justice has equal power, and any acceptable power index
would be expected to reveal that. But in a majority weighted game
such as [11;4,3,3,3,2,2,1,1,1] it is not immediately clear how much
additional power the players with more votes have. Power indices
were designed to answer these types of questions.

A power index, then, is a function from simple games on n
players to R®", which are the "power vectors", normalized so that
their (nonnegative) components sum to 1. Following are the
definitions of four power indices.

The Shapley-Shubik Index

This index considers the fractional percentage of the time
that player i will be pivotal to the success of a winning
coalition. All possible permutations of the players are
considered, and in each permutation the players are considered to
be joining the coalition in the order of their appearance. The
player whose appearance first causes a losing coalition to become
winning is the pivotal player for that permutation. The Shapley-
Shubik index thus assigns to each player i a component of the power
vector as follows:

| = pi
d?i (N;. -'H

where p; is the number of times player i is pivotal.
The Bahnzaf Index

Consider all winning coalitions W of a simple game. Player i
is critical to a coalition ScW if {S/{i}) is a losing coalition.
The Bahnzaf index measures the fraction of time that player i is
critical relative to the number of times all players are critical.
or,

By=—at

i~ 7q
\
Yoy
1
% 1

where 7, is the number of times player i is critical.

The Johnston Index

Akin to the Bahnzaf index, this' index makes an additional
distinction among vulnerable coalitions (coalitions in which one or
more players are critical) according to the number of c¢ritical
players in the coalition. Presumably, a player has more bargaining
power if he is uniquely critical than if, for example, three other

9.
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players are also critical. The Johnston index is defined as
follows:

E 1
J.= ieSev F(S)
’ vl

where F(S) is the number of critical players in coalition S and V
is the set of all vulnerable coalitions. .

The Deegan-Packel Index

This index is identical to the Johnston Index except that it takes
into account only minimal winning coalitions. It is defined as
follows:

_ 1 1
P 2 Ta

where M is the set of minimal winning coalitions, and M, is the set
of minimal winning coalitions containing player i. The idea here
is that the larger the minimal winning coalition, the less power
accrues to a player involved in it, because it is more difficult to
form. The lj)m factor serves to normalize the power vector.

Calculation of Indices - Example

Consider the 5-player simple game with set of minimal winning
coalitions M = (AB,CD,ACE,ADE,BCE}.

To calculate the Shapley-Shubik index for this game, 1list all
permutations of the players. Assume for each permutation that the
players join in the order from left to right. Underline the one
player who causes the coalition to change from losing to winning.
The first few of the 120 permutations are listed below:

ABCDE ABCED ABDCE ABDEC ABECD, ABEDC
ACBDE ACBED ACDBE ACDEB ACEBD -. ACEDB
It turns out that player A is pivotal 32 times, i
B is pivotal 22 times,

C is pivotal 3@ times, 32

D is pivotal 24 times, 22z

E is pivotal 12 times,

yielding a Shapley-Shubik index of [32 22, %6 24 ,12]1/120.

To calculate the Bahnzaf index, 1list all winning coalltlons,
underllnlng the players who are crltlcal to the coalition’s
rgmalnlng winning: ‘

} 1
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AB ABC ABCD ABCDE
CD ABD ABCE
ABE ABDE
ACD ACDE
ACE BCDE
ADE
BCD
BCE
CDE
Player A is critical 7 times,
B is critical 5 times,
C is critical 7 times,
D is critical 5 times,
E is critical 3 times,

so the Bahnzaf index for this game is [7,5,7,5,3]/27.

To calculate the Johnston index for this game, refer to the listing
of winning coalitions above; but instead count fractional critical
defections. It turns out that the Johnston index is

11 7 11 7
P I—ll 13
3 3 33 /

Finally, to calculate the Deegan-Packel index, consider only the
set M and do the same calculation as for the Johnston index. This
yields

lléllléil /5
6 6 6 6

Comparing the results from the four indices we have the following
results, by percentage of power per player:

Index A B e D E
. 26.7 19.3
Shapley-Shubik 26.7 18.3 259 260 10.0
Bahnzaf 25.9 18.5 25.9 18.5 11.1
Johnston 28.2 17.9 28.2 17.9 7.7
Deegan-Packel 23.3 16.7 23.3 16.7 20.0

~ )
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Comparison'of Indices — Oceanic Weighted Voting Game

It turns out that each of the four indices discussed embodies
different assumptions about the voting process. For example, it is
well known that the Shapley-Shubik index is more applicable to
situations where the players have a good chance of convincing each
other of their viewpoint, whereas the Bahnzaf index might better
model a situation where the opposite is true. In yet another
interpretation, it has been demonstrated that the Shapley-Shubik
index adequately models voting situations in which the voters come
into the vote with similar ideologies, whereas the Bahnzaf index
better models votes where the players vote "heterogeneously". [2]

Each index also has different mathematical properties. An
1nterest1ng case in point is how each index measures power in
oceanic weighted voting games. These are majority weighted games
in which alongside one or more "major players" exist a large
(perhaps infinite) number of minor players of miniscule and equal
power. An example is the game

2 2 2 ]

[2;11__1_1"'1'—'

n-1 n-1 n-1
as n gets large. (There are (n-1) minor players, for a total of 3
votes in the game. ) It seems intuitive that the major player

controls a considerable part of the power (he holds 1/3 of the
votes), though not all of it.

Applying each of the four indices described above yields the
following results:

Shapley-Shubik Index

Within the set of all permutations of the n players, when n is odd
the major player is pivotal if he joins the players in positions
((n=-1)/2 + 1) through (n-1), and in positions (n/2 + 1) through (n-
1) when n is even. Since the major player appears in each position
equally often in the set of all permutations, the Shapley-Shubik
index for the major player is as follows:

21 podd {
L P
272, even
2n N 1

Clearly, as n»oo this index allots half the power to the major
player, wlth the other half divided equally between the minor
pl ayers. amoﬂﬁ



Bahnzaf Index
Here we count winning coalitions to which a player i is critical.

The major player is critical to all w1nn1ng coalitions except the
one containing all players and the one in which he is not involved
(and all the minor players are). When n is odd, the number of
winning coalitions to which the major player is critical is "then:

(n-1) (n-1) ((n—l))
(n-1) | *| (n-1) PO R W €22
2 2

And the number of winning coalitions to which each minor player is
critical is:

Since there are (n-1) minor players, the Bahnzaf value for the
major player is then:

n-1 :
n+l n-1
—1 + -1 j+...*
w5 e (2
But as n gets large, this expression approaches 0, indicating that
the major player holds none of the power! To see this, we will
show that the third term in the denominator grows larger much more

quickly than the numerator as a whole as n gets large, by making
use of Sterling’s factorial approximation:

nl= J27n (l—g)n ¢

The middle binomial coefficient then: becomes: !

21 (n-1 -E:l-nq
n-1Y) _ e
- -112
22, (a1 fa-ny 5 |
2 |\ 2e /
_ 2
= 2n 1
7 (n-1)

-
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Now, as n gets large, the third term of the denominator over the
entire numerator goes to the following limit:

= lim (n+_l)2 = 00
Do \J 21 (n-1)

Thus the denominator grows much larger than the numerator as n gets
large, and the Bahnzaf value for the major player does indeed
approach 0.

Johnston Index

This is similar to the Bahnzaf index, except here we take into
account the number of critical players in each winning coalition.
In the coalition of all minor players without the major player,
there are (n-1) critical defections. 1In the coalitions with
(n-1)/2 minor players and the major player, there are (n-1)/2+1
critical defections. 1In all other winning'.coalitions except the
one with all players, the only critical defection belongs to the
major player. In the coalition of all players, there are no
critical defections. The denominator in this index is the number
of vulnerable coalitions, which is the number of winning coalitions
minus the grand coalition. Thus, when n is odd (the situation is
similar when n is even), the Johnston index for the major player
is:




But we can ignore the first term of the numerator and the first two
terms of the denominator as n gets large, because the middle
binomial coefficient becomes insignificant compared to the sum of
all binomial coefficients (or half of them) with increasing n.
This is evident because:

n-1 2
1im © \ ®(n-1)

In-co

21)—1
=1im _.2—._. = 0

Thus, as n gets large, the limit of the Johnston index proves to be
as counterintuitive as the Bahnzaf index in oceanic weighted
majority games, though providing a different result: the major
player is assigned all the power, rather than none.

Deegan—-Packel Index
M, the set of minimal winning coalitions, consists of:
1. The set of all minor players
2. Every set including the major player and exactly
(n-1)/2 minor players (if n is odd), or the major player and

exactly n/2 minor players (if n is even).

Thus, when n is odd, applying the formula for the Deegan-Packel
index to the major player:

Now taking the limit as n goes to infinity yields the result that
the major player has no power in large games. Only the Shapley
index winds up giving the intuitive‘result for such games.

#
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Characterization of Shapley Power Vectors

It may be possible to obtain all Shapley-Shubik power vectors
for n-player games without enumerating all n-player games.

Since many simple games of n players have equivalent Shapley
power vectors (excluding permutations on the n players), the number
of these vectors, P(n), grows less quickly than the number of
simple games on n players, S(n):

n S(n) P(n)
1 1 1
2 2 1
3 5 2
4 20 7
5 180 56

Listed below are the distinct Shapley-Shubik power vectors on
simple games of up to 5 players with no dummies. Power vectors in
n-player games with dummies are found by appending the appropriate
number of zeroes to all power vectors of games with (n-1) and fewer
players.

3
]
[

|

(1)
(1,1)/2

(2,2,2)/6
(4,1,1)/6

3
Il
N

3
1l
W

]
1l
S

=]
Il
o

NN WWHsPONONNDO®
O~ =

e ettt et e T
WWWWWWWWbd b

(28,13,13
) /60

/b



(28,8,8,8,8)/60
(27,27,2,2,2)/60
(27,12,12,7,2)/60
(27,12,7,7,7)/60
(26,11,11,6,6)/60
(25,15,10,5,5) /60
(24,14,14,4,4) /60
(24,14,9,9,4)/60
(24,9,9,9,9)/60
(23,23,8,3,3)/60
(23,18,8,8,3)/60
(22,17,17,2,2)/60
(22,17,12,7,2)/60
(22,17,7,7,7)/60
(22,12,12,7,7)/60
(21,21,6,6,6)/60
(21,16,11,6,6) /60
(21,11,11,11,6) /60
(20,20,10,5,5) /60
(20,15,10,10,5) /60
(20,10,10,10,10) /60
(19,19,14,4,4)/60
(19,19,9,9,4)/60
(19,14,14,9,4)/60
(19,14,9,9,9)/60
(18,18,18,3,3)/60
(18,18,8,8,8)/60
(18,13,13,13,3)/60
(18,13,13,8,8)/60
(17 ,17,12,12,2) /60
(r7,17,12,7,7)/60
(r7,12,12,12,7)/60
(16,16,16,6,6) /60
(16,16,11,11,6)/60
(16,11,11,11,11) /60
(15,15,15,10,5) /60
(15,15,10,10,10) /60
(14,14,14,14,4)/60
(14,14,14,9,9)/60
(13,13,13,13,8)/60
(12,12,12,12,12) /60 {
Notice that the least common denominator for the cases n=4 and n=5
are not n!, as in the formula for “the Shapley valud, but n!/2.
This can be explained by the fact that when there are at least four
players involved in the simple game, the number of times a player
is pivotal

(n-s) ! (s-1) 1

is always even. For example, when C is pivotal in the player
ordering ABCD it is also pivotal in BACD. Hence the least common

¥



denominator for Shapley-Shubik indices in 4-player games is 12, not
24. Continuing with this reasoning, the following serve as least
common denominators for the next few larger sized simple games:

n denominator

6 720/6 = 120
7 5040/6 = 720
8 40320/24 = 1440
9 362880/24 = 12560

As a first approach towards developing a method to find all
possible Shapley-Shubik power vectors, we consider incremental
strengthening of games. Starting with the (five-player) simple
game M=(ABCDE}, in which only the grand coalition is winning,
consider those simple games in which exactly one additional
coalition is winning. By monotonicity, this would have to be one
of the games M={ABCD}, M={ABCE}, M={(ABDE}, M=(ACDE}, or M={BCDE).
By continuing to move through simple games in which one coalition
at a time is changed from losing to winning, one can arrive at any
simple game. Now, when a 4-player coalition is changed from losing
to winning, the players in that coalition become critical, since
the coalition is minimal winning. Thus the power index for these
four players increases by (5-4)!(4-1)!/5! = 1/20. The lone player
not in the newly winning coalition sees its power index decrease
because it is no longer critical in the grand coalition. Thus its
power decreases by (5-5)!(5-1)!/5! = 1/5.

By similar reasoning, when a three-player coalition changes
from losing to winning, the players in that coalition increase in
power by (5-3)!(3-1)!/5! = 1/30, while the players not in the
coalition decrease by (5-4)!(4-1)!/5! = 1/20. All in all:

Change in Change in
Power Index Power Index
Size of Newly Winning of Coalition of Other Players
Coalition Members

4 + 1/20 - 1/5
3 + 1/30 - 1/20
2 + 1/20 - 1/30
1 + 1/5 . - 1/20

Thus, taking an example from 4-player simple games, any possible
Shapley-Shubik power index must be of the form !

4

6
1 1 1 1 2: 1 1 1 1 z: 1 1 1 1
—"'l_'l_l_+ a'_l\_'l_l—‘— +, b'——_l_—l——l_—
4 4 4 4]_#1 1[12 127 12 4]_F1 1[12 12 12 12]

4
1 1 AL 1
Yol -—, -, -—
2; k[4 12’ 2 12}

/%



where the a;, by, and c, are nonnegative coefficients of all
permutations of the last three vectors in the expression above. It
turns out for the case n=4 that all nonnegative vectors of the
above form are indeed Shapley-Shubik power vectors of 4-player
simple games; however, for the n=5 case not all nonnegative vectors
in the equivalent linear-combination expression (not derived here)
are Shapley-Shubik power vectors. Thus it is not readily apparent

how to obtain all Shapley-Shubik power vectors without calculating
all n-player simple games.

s
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