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The Shapley-Shubik and Banzhaf power indices can be characterized
on simple monotonic garhes with Efficiency and two classes of
axioms. The first class, the Transfer axioms, partially dictates the
structure of the indices and includes the familiar axioms used by
Dubey in his characterization (1975). The second class, the Fairness
axioms, pertains to the notion of 'fair play." It includes notions such
as Symmetry. We also show that both power indices can be
characterized on superadditive simple games by axioms weaker than
those previously examined.
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§0: Introduction.

The Shapley-Shubik and Banzhaf power indices are quantitative
measures of the influence of a given player in a simple cooperative
game. These indices have been previously characterized by Dubey
with the familiar axioms of transfer, symmetry, dummy and
efficiency. We present generalizations of these axioms, which fall
into three categories. The first such is the Transfer axioms, which
govern the behavior of a powér index for a fixed player across
different games. The second is concerned with the behavior of a
power index for a fixed game across different players. The Equal
Treatment axiom is a member of this category. The other Fairness
axioms which we propose incorporate aspects of both these classes.
The third grouping, to which Efficiency and Efficiency” belong,
specifies the overall power across players in a fixed game. We also
introduce a set of axioms weaker than that used by Dubey, and

characterize both power indices with it.

§1: Preliminaries.

Let N = {1,. . ., n} be the set of players. A coalition of players
is Sc N. Denote by n and s the cardinality of N and S respectively.

A game is a real-valued set function v defined on all
coalitions and satisfying v(@) = 0. A simple game is a game such
that v(S) = 1 or 0 for all S, and v(N) = 1. A coalition S is winning
whenever v(S) = 1 and losing otherwise. A game is monotonic if
v(S) > v(S") whenever S o S”. A game is superadditive if v(S L T) 2
v(S) + v(T) for SN T =9. Agame is proper if it is both monotonic

and superadditive. In the class of simple games, superadditivity
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requires that disjoint coalitions cannot both be winning. Let I and C
denote the class of games, and the class of simple monotonic games
respectively.

A value is a function y that associates with every game v e T’
a real n-vector y(v) = (yi(v)), i e N. A power index is a value
restricted to C.

For simple games, if v(S) = 1 and v(S - i) = 0, then we say that
player i is critical with respect to S in v, and S is a pivot foriinv.
Let P;(v) be the collection of pivots for i in v. A coalition is a
minimal winning coalition (MWC) whenever all its members are
critical. A monotonic simple game can be specified by a listing of
its MWCs: v(S) = 1 if T c S for some MWC T; otherwise, v(S) = 0.

A unanimity game u; is a game such that up(S) = 1 if and only

if SoT; i.e. a simple monotonic game in which T is the only MWC.

§2: The Shapley-Shubik and Banzhaf Power Indices.

The Shapley value on T is defined by

e
o) = Q= gy (s - i)

where the sum is taken over all coalitions containing player i.

The Shapley-Shubik power index on C is defined by
s - 1)l(n - 9s)!
= g T
Se Pi(v) '

Denote by m;(v) the number of coalitions to which i is critical,

le. n;(v) = IPi(v) | . These are known as the "raw Banzhaf indices."

Letn'(v) = D, IPv) .
ie N



The Banzhaf power index is defined by

Bi(v) Tli(V)
| = > e
n’(v)
The absolute Banzhaf power index is defined by
) n;(v)
Bi(v) = -

The Shapley-Shubik power index can be thought of as the
probability that a player is critical, assuming that all permutations
are equally likely to occur. The absolute Banzhaf power index is a
similar probability measure, but assumes instead that all
combinations of players are equally likely. The Banzhaf power index

is the normalization of the absolute index.

We introduce a number of value axioms in this paper. The
format of our definitions is, "The value y satisfies axiom A (on class
G of games) if condition C holds (for all games in G)." In order to
conserve space, the references to the class G in parentheses has
been omitted from each of our definitions. The theorems will
explicitly state the class of games under consideration.

Shapley, in 1953, proposed the following four axioms:

Efficiency (Eff): A value vy is efficient if Z\yi(v) = v(N).
ieN
Note that on C, v is efficient if Z\yi(v) = 1.
ieN

For the set of players N, define n: N — N be a permutation of N.

For all S c N, let nv(S) = v(n(S)).



Symmetry (Sym): The value y is symmetric if V ie N and for all

permutations n of N, ‘l’n(i)(v) = y;(nv).

The player i is a dummy in the game v if V(S U i) - v(S) = 0 for
all Sc N.
Dummy (Du): The value y satisfies the dummy axiom if y,(v) = 0
whenever player i is a dummy in v.

Given two games v,w e T, let (v + w)(S) = v(S) + w(S) for all
S c N. ltis easy to show that v + w e T.

Additivity (Add): The value y is additive if y(v + w) = y(v) + y(w).

Theorem (Shapley. 1953): The Shapley value is the unique value
satisfying Eff, Sym, Du and Add on the class of all (superadditive)

games.
In fact, the Shapley value can be characterized through a
weaker axiom, Equal Treatment (ET), in place of Sym.

Equal Treatment (ET): The value y satisfies the equal treatment
axiom if y;(v) = \yj(v) for all S ¢ N - {i,j}.

Eff, Sym, Du and Add do not uniquely specify the Shapley value
on C since Add is not a restriction on simple games. Indeed, for v,w

e C, thegame v +w ce' C, as (v + w)(N) = 2. In order to characterize

the value on C, Dubey (1975) replaced Add with a transfer axiom.

Dubey Transfer Axiom (DTr): The power index y satisfies the Dubey

transfer axiom if y(v A W) + y(v v w) = y(v) + y(w), where v A w and

v v w denote the games given by



" {1 if v(S) =1 and w(S) = 1
8 e 0 otherwise
. {1 if w{8) =1 or w{8) = 1
S 0 otherwise
Theorem (Dubey., 1975): The Shapley-Shubik power index is the

unique value satisfying Eff, Sym, Du and DT on the class of

monotonic simple games.

Dubey (1979) characterized the Banzhaf index B for simple

monotonic games with the axioms Sym, Du, DT and a variation of Eff.

For B, a power index satisfies Dubey's modified Efficiency (Eff) if

Y wiv) = ().
ie N

Theorem (Dubey. 1979): The raw Banzhaf indices is the unique value

satisfying Eff, Sym, Du, and DT on the class of monotonic simple

games.

§3: Transfer Axioms.
We now propose axioms which will generalize and strengthen
these characterizations of the Shapley-Shubik and the Banzhaf

indices. The first set determines the structure of the index.

Unanimity game Transfer (UTr): The power index y satisfies the

unanimity transfer axiom if for all T < N such that T # &, y;(v) =

yi(vaup) +y(vvug), Vie T.



UTr is formulated with respect to a unanimity game applied in
conjunction with Dubey's Transfer axiom, and so is roughly
analogous to the Coalitional Strategic Equivalence axiom proposed

by Chun (1989) in his characterization of the Shapley value. It

specifies the effect of an unanimity game u; on the players outside

the coalition T. By interpretingv A upand v v u; as games in

which, respectively, coalition T has acquired the power to veto
motions and the power to pass motions, we can see that UTr states
that the sum of the power lost by a player i ¢ T in each new
situation is equal to his total power in the original game v. Note

that if v is-a superadditive game, v v u; need not be superadditive.

UTr holds on superadditive games if the given equality is true for all
superadditive games v for which v v u; is also superadditive.

Split Pivot Transfer (STr): The power index y satisfies the split
pivot transfer axiom if y;(w) = y;(v) + y;(u) when the games u and v
split player i's pivots in the game w, i.e. Pi(w) = P(v) u P;(u) and
P.(v) n P(u) = @.

STr requires that if the pivots of player i are completely
divided between two other games, then the worth of i in the original
game is equal to the sum of the worth in the other games. This is in
a sense similar to Shapley's original Additivity axiom. It
formalizes, in a strong form, the notion that a player's voting power

is the sum of the power available in each possible situation.



TransferSum Axiom: The power index y satisfies the TransferSum

Axiom if there exists a function f : 2N x {1,2, . . . ,n} —» R, where 2N

is the space of subsets of N, such that w;(v) = 3. W3
Se Py(v)

Note that the definition of f(S,i) only matters for i € S.

Weber 1978 demonstrated that if y,(v) is a value on simple

games satisfying DTr, Dummy, and Monotonicity (if a game is
monotonic, then w;(v)20), then there is a collection of constants

{pt : T c N-i} satisfying Ypr = 1 andp; 20 forall T+, such
TcN-i

that for every game v € C, Z prlv(Tui) - v(T)].
TcN-i

Our function f(S,i) is a probability distribution on the
coalitions containing player i when Weber's conditidns are applied.
The power index can be thought of as the probability that the player
is critical.

Bolger 1980 proposed characterizations of values of the form

vi(v) = Y f(S,v). Power indices of this form include the Shapley-
SeP.(v)
|

Shubik, Banzhaf and Deegan-Packel. Our axicm stales that such a
summation is a basic property, though we are considering only

functions f that do not depend on the game v.

It is possible to prove (see steps 1a, 2a, and 3a in the proof of
Theorem 1 below) directly from the definitions that (1) TransferSum
implies STr, DTr, and Du, (2) STr implies UTr, and (3) DTr and Du
imply UTr. Our first theorem says that all four transfer axioms are

equivalent on monotonic simple games. However, UTr is strictly

-



weaker than the others on proper (i.e., superadditive and monotonic)

simple games.

[heorem 1: The following transfer axioms are equivalent on
monotonic simple games. The first three axioms are equivalent and
imply the fourth on proper simple games.

1) TransferSum Axiom

2) Split Pivot Transfer Axiom

3) Dubey's Transfer Axiom and Dummy

4) Unanimity Transfer Axiom.

The proof of the equivalence on monotonic simple games is divided

into three steps.

Step 1a: The TransferSum axiom implies STr.
Proof: We can simply separate the sum by the coalitions split by

games u and v. Obviously, this implies y;(w) = yi(v) + w;(u).

Step 1b: STr implies the TransferSum axiom.
Proof: Define v! to be the game with MWCs T U {jforallje T.
Define f(S,i) = \ui(vs'i). Clearly, player i has exactly one pivot in
vS1 namely S, so TransferSum holds on all such games. We will
show that TransferSum holds on all monotonic simple games
through an induction on the number of i's pivots.

If player i is a dummy in w, then w and w vacuously split i's
pivots. STr implies that y(w) = y;(w) + y;(w), hence yi(w) = 0.
So, TransferSum holds on all games having zero pivots for player

- L



Assume TransferSum holds for games where i has m-1 or
fewer pivots. Let w be a game where i has m > 0 pivots. There
must exist a MWC T containing i. Let u have the same winning
coalitions as w except for T. So, player i has the same pivots in u
as in w except for T. Let v= vl So, T is the only pivot for
player i in v. Hence, u and v split the pivots of w and i has m -1

pivots in u. By the inductive assumption, the definition of f, and

STr, we may write y;(w) in summation form.

Step 2a: The TransferSum axiom implies Du and DTr.

Proof: If player i is a dummy, then the sum is vacuous in
TransferSum. So, Du follows. Consider now two games v and w.

If S is a pivot for i in both v and w, then S is a pivot for i in both
vawandvv w. IfSis a pivot for iin exactly one of v or w, then
S is a pivot for i in exactly one of v A worv v w. Finally, if Sis a
pivot for in in neither v or w, then S is a pivot for i in neither one

of vAworvyv w. Hence, it is possible to rewrite

2, o, T L f(S,I)
Se Py(v) SePi(w)

as

Yy f(S.) + Y, f(S,i)

SePy(v A w) SEPi(VVW)

which shows that DTr holds.

Step 2b: Du and DTr imply the TransferSum axiom.
Proof: We define f(S,i) inductively. Let f(N,i) = w;(vy), where vy

is the unanimity game on N, and let f(S,i) = y;(vg) - 2. f(T.i), where

the sum is over strict supersets T of S. In this way, we ensure

- D -



that TransferSum holds on unanimity games. Clearly,
TransferSum also holds on games for which i is a dummy.

We will now consider games in which player i appears in all
MWCs, and induct on the number of MWCs. Assume the claim for

games of m-1 or fewer MWCs. A game with m MWCs may be

written as v= vy v Vo, Vv...Vv V..
Letw= vyandu= vov...v V.. Then by DTr, we have
V(W) + y;(u) = w;(w A u) + (V).

So yi(v) = y;(u) + (W) - yi(w A u). The games u, w and w A u
are games with fewer than m MWCs, all of which contain player i.
By the induction assumption, y;(u), y;(w) and y;(w A u) can be
written in summation form, which yields the desired summation
for y;(v) as argued in Step 2a. Consider a game v = w v u, where w
represents MWCs not containing player i, and u the MWCs
containing i. By DTr, we have y(v) = y;(u) + V(W) - yi(w A u). By
Du, y;(w) = 0. The games u and w A u are ones that have player i in
all MWCs, so they can be expressed in summation form. P(w A u)

= Pi(u) - Py(v), so y;(v) can also be expressed in summation form.

Step 3a: Du and DTr imply UTr. STr implies UTr.
Proof: Assume the hypothesis for UTr. By DTr, we have y;(v) +

vi(ug) = wi(v A up) +y(v v ur). By Du, yi(uy) =Oforallie T, as i

is a dummy in u;. Therefore, yy(v) = y;(v A up) +y(vvug), Vie T.
Assume the hypothesis for UTr again. Clearly, v A ur and v v ug

split the pivots in v of each player i ¢ T between supersets and

nonsupersets of T, respectively. The conclusion of UTr now

follows directly from the conclusion of STr.

+ B -



Step 3b: UTr implies the TransferSum axiom.
Proof: We first show that UTr implies Du. Let v = ug, the

unanimity game on T. Then for i ¢ T, we have vi(v) = (v A ur) +
yi(vvug) = 2y;(v). Therefore, yi(v) =0 forallie T. We now

induct on the number of MWCs of v. Assume that UTr implies Du
for games with fewer than m MWCs. Consider v = vy v vy v...v

v =vp vV, where v =vyv...vVgy,. For i dummy, y;(v') =

m-1
WiV A vp) + v;(v" v vq) by UTr. The game v’ v vy is merely v. The
games v’ and v’ A vy have fewer than m MWCs, and so the values

of i on those games are zero by induction. Therefore, y;(v) = 0.

Thus, UTr implies Du.

In order to show that UTr implies TransferSum, define {(S,i)
inductively as in Step 2b. In this way, TransferSum holds on
unanimity games, that is, games with one MWC containing player i
and no MWC not containing player i.

Assume that TransferSum holds for games with one MWC

containing player i and fewer than m > 0 MWC not containing

player i. Such a game can be written as v = vy v vy v...v Vg,
where i e T and v, is the unanimity game on the kth MWC not
containing player i.

Letv =vpvviv...vvy,. By UTr, we have y;(v') = y;(v) +
vV A Ven)-

Game v’ fulfills the induction hypothesis, and v' A v_ either
fulfills the induction hypothesis or has i as a dummy. Hence, both
games satisfy TransferSum. Since they also split i's pivots in v,

it follows that v satisfies TransferSum.

s



We now induct on the number of MWC containing i. Assume the

hypothesis for games with fewer than m > 1 such MWC, and

consider the game v = vy v vy v ...V V4V v’, where T is the mth

MWC containing player i, v, is the unanimity game on the kth such

MWC, and v’ is the game composed of the MWCs not containing I
By UTr,

\ vi(v) = wi(v A V) + wv Vo)
Béth games on the right hand side have fewer than m MWC

containing i and therefore fulfill the induction assumption. Since

i's pivots of v are split between v A vy ; and v v vy,

vy = X f(S.0).

Se Pg(v)

This completes the proof of the equivalence of the four axioms
on the class of monotonic simple games. The proof of the final
statement of the theorem involves checking that the above

arguments (except for step 3b) still hold (except for one change)

~r ‘."1:‘,\ ~Alones ~f mrsnas cirmale memocg Qinn 1~ Da anAd 2 Fallaa
WiE LT W 3" b SIS 0 Sl Ly Ll S i e

ERUG ] 2 gLt

directly from the definitions. In step 2b, f is defined via
unanimity games, which are superadditive, and if v is
superadditive in the two induction arguments, then the other
games constructed are easily seen to be superadditive. In step
1b, the games vl are all superadditive except when S = {i}. We
change this step of the proof by defining f({i}.i) = ‘Vi(v{i}) -
Zf(S,i), where the summation is over all strict supersets S of I.
In the induction argument of step 1b, if w is superadditive, then u

and v are superadditive unless T = {i}. But if T = {i}, then the

R -



superadditivity of w implies that w = v, and TransferSum holds

by our definition of f({i},i).

Q.E.D.

The proof of Step 3b holds in the space of proper simple games

except for the final induction. Given a proper game v and MWC T,
V v v may not be proper. For example, v could be a four player

game with the MWCs T = {1,2,3} and {1,4}. Thenv v vy, has the

MWCs {2,3} and {1,4} and is not superadditive. In fact, UTr is

strictly weaker than the other transfer axioms on the class of

proper games.

We will show this by exhibiting power indices

satisfying UTr but not the other transfer axioms on 3-player proper

simple games. All 3-player proper simple games are listed below.

S i o Weo o e Na il e e W Ng Vg i)
1.2, 1% s 3 1 . LA 1 1 g
g Ealls 4 8 e 1 TP
{1, 3HO 0 | i LB R 0 :
{1,2} |0 U V] AR TR ik T 1 i
e o s B SR R
{ 2} |0 0 0 0 0 0 0 0 0 1 0
{1} 0 0 0 0 0 0 0 0] 0 0
v,(vi) |a 0 -asb we B £  esa E 0 ©  ab

+c+d

a=({1,2,3},1), b =#{1,3},1), c = ’{1.2},1): d = ®{T1},1)

The numbers 1 and O in a matrix entry designate winning and

losing coalitions, respectively.

Coalitions with asterisks next to



them are pivots for player 1 in that particular game. The values
a,b,c,d represent the function from the TransferSum axiom on a
given pivot of player 1. TransferSum would also imply that e = b + c.
UTr places no restriction on e because we would be required to

construct a nonsuperadditive game. Therefore, by assuming only
UTr, we cannot obtain a value for Vg, NOr can we obtain one for v, as

the only su(peradditive game we would be allowed to construct is vg.

Thus, on superadditive games, STr, Du and DTr, and the
TransferSum axiom are equivalent notions. All of these are stronger

notions than UTr, since UTr is a necessary condition of Du and DTr.

§4: Fairness Axioms.
We now consider axioms related to fairness. These include
Symmetry and Equal Treatment. We will introduce two additional

notions.

Equal Treatment on Unanimity Games (ETUG): The power index y

satisfies equal treatment on unanimity games if y,(vy) = \;;j(vs) for
allie T,je S whenever |T| = |S| for the coalitions T and S.

ETUG requires the players in the MWCs of unanimity games to

be treated equally if these MWCs have the same cardinality.

FairSum Axiom:3f:{1,2,. _..n} >R 5> y;(v) = D> f(s).
SeP(v)

FairSum is the TransferSum axiom when the function f does

not differentiate between any particular player i or coalition S. The

function depends only on the cardinality of S.

-



Theorem 2: Suppose the power index y satisfies the TransferSum
axiom. The following axioms are equivalent on the class of

monotonic simple games.

1) FairSum

2) Symmetry

3) Equal Treatment on Unanimity Games (ETUG)
4) Equal Treatment

Call these the fairness axioms.

Proof: 1t follows from the definitions (even without
TransferSum) that FairSum implies Sym, and Sym implies both
ETUG and ET. Hence, it is sufficient to show that (1) ETUG
implies FairSum, and (2) ET implies FairSum. Suppose vy satisfies
TransferSum and f is the function which defines y according to
TransferSum. In order to show that y satisfies FairSum, it is
sufficient to show that f(S,i) depends only on the cardinality of S.
Clearly, this is true for S = N if y satisfies ETUG or ET.

We first finish the proof of ETUG implies FairSum. Suppose
that f(S,i) depends only on the cardinality of S whenever the

cardinality of S is greater than t. Let T be a coalition of
cardinality t. By TransferSum, (T,i) = y(v) - Zf(S,i). By the
SoT

induction hypothesis, f(S,i) = f(s) for all S ; T, and so the sum

depends only on the cardinality of T. By ETUG, it follows that
vi(vg) = \yj(vT) forallie R,je T, and R having cardinality t.

-



Hence, f(T,i) depends only on the cardinality of T. The proof that
ETUG implies FairSum is now complete by induction.

We now consider the proof of ET implies FairSum. It can be
shown that f(S,i) depends only on S by way of the same induction
as in the last paragraph. The reason a stronger result is not
possible is that by ET, it follows only that y;(vg) = \yj(vT) for all i
e R je T, and_ R = T, that is, we cannot let R be any other set than
T. Now consid/er a coalition S and two playersie Sandje¢ S. By
ET, £(S) = wi(vS ) = y;(vh = (S - {} U {i}). Successive
application of this equality show that f(S) = (T) for all
coalitions S and T with the same cardinality. Thus, ET implies

FairSum.
QED.

The four fairness properties are not equivalent when a power
index only satisfies UTr on the class of proper simple games.
Consider the 3-player proper simple games introduced earlier and

define the power index y as follows:

Vg WMo ¥y Wy Vg Vs ¥y Vg ¥g . Yyp

vilvy) | a 0O a+tb a+b b b a+el el 0 0 a+2b

+d1

vo(vy) | @ asbh 0 b b 82 b g2 0 a+2b 0
+d2

wa(vy) | 2 atb a+b 0 a+e3 b b e3 a+2b O 0

e o



The power index vy satisfies ET iff e1 = e2 = €3; ETUG iff d1 =
d2 = d3; Sym iff el = e2 = e3 and d1 = d2 = d3.

§5: Characterization by Unanimity Transfer Axiom

Note that ET is a necessary condition of Sym. We will now
show that the Shapley-Shubik and Banzhaf indices are characterized
in the space of superadditive games by ET and UTr, an axiom strictly

weaker than DTr used by Dubey (1975).

Theorem 3: The Shapley-Shubik (resp. Banzhaf) power index is the
unique power index satisfying UTr, ET and Eff (resp. Eff") on the
class of proper simple games.
Proof: UTr implies Du, and by Eff, ET, and Du, the power index is
characterized on unanimity games. We will now induct on the
number of MWCs a game has. Assume the characterization for
games of m-1 or fewer MWCs. Let v be a game with m MWCs.
Thenv=v v...vVg, where each v,, is an unanimity game on the
ith MWC.
Let A be the set of players that do not belong to every MWC, i.e.
A={ie N| 3TaMWC,>ie T}. Let B be the set of players that

belong to all MWCs. So B =N - A.
Vie A let TbeaMWC >ie T. Then the unanimity game vy is

one of the games Vi

game v without MWC T. Obviously, v = V' v V.

Let v =SVi{V . Vg V Vg VeV the

By UTr, w;(v) = w;(v') - yi(v A ug). Both viand v A up = up are
proper and have fewer than m MWCs, so v;(v) and y;(v A ug) are

known. Therefore, we can determine y;(v), Vie A.

- 20 -



By ET, all i e B receive the same payoff. Since we know the

payoffs for i ¢ B, by Eff we known the payoffs for i € B. In fact,

]
wiv) =g 1 - dwWl. Vie B.
jeA

The Banzhaf power index can similarly be characterized using

Eff". The formula for i € B is then

;
vil) = g W) - ;\wj(v)l., Vie B.
je
QED.

o 8% .
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