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Abstract

Cooperation games are competitions where there is a conflict between
personal and societal gain. No matter what others choose to do, personal
gain is maximized by defecting; however, mutual defection is worse per-
sonally than mutual cooperation. The iterated prisoner’s dilemma is one
of the most simple and widely studied such games. This is a round-robin
style tournament where in each round, players can choose to cooperate
with or defect from their opponent, and previous actions are remembered
and used to determine a player’s next move. In the evolutionary form of
the iterated prisoner’s dilemma, players that do poorly will die out, and
players that do well will be copied. Their copies are sometimes mutated,
resulting in new strategies that are usually worse but are sometimes bet-
ter. It’s been shown several times that there are no evolutionarily stable
strategies (ESS) in this game; however, Lorberbaum et. al. showed that
this finding is a mathematical technicality which only happens because
these strategies are too perfect. ESS’s start to appear when we introduce
a constant e, where 0 < e < 1

2
, and instead of the strategies cooperating

with a probability of 0 or 1, they now cooperate with a probability of
e or 1 − e. More specifically, they showed that there are exactly three
one-move memory ESS’s: Pavlov, which generally cooperates if and only
if both players simultaneously either cooperate or defect; Grudge, which
cooperates if and only if both players simultaneously cooperate; and AllD,
which generally defects after all histories. AllD is always an ESS, but the
other two rely on certain payoff conditions to be evolutionarily stable.
This paper hopes to generalize the results of Lorberbaum by allowing the
strategies to look back more than one round, concluding that a modified
Pavlov strategy exists as an ESS for any payoff conditions.

1 Introduction

A commonly analyzed game in game theory is known as the prisoner’s dilemma.
This is a two player game where each player has the choice of either cooperating
or defecting. There are four different payoffs they can get, depending on what
they do or what their opponent does. They are:

• a reward R, which both players get if they both cooperate;

• a punishment P , which both players get if they both defect;

• a temptation payoff T , which a defector gets against a cooperator; and
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• a sucker’s payoff S, which a cooperator gets against a defector.

The trick here is that the payoffs satisfy T > R > P > S, which means that
both players can maximize their payoff by defecting, regardless of what their
opponent does. Since T > R and P > S, whatever a player’s opponent does,
it is always better for the player to defect. This is a problem because mutual
cooperation is better than mutual defection. By doing what’s best for them
personally, both players will receive a punishment, when they could have gotten
a reward. Betrayal stifles collaboration.

In the iterated version of the prisoner’s dilemma, this problem is resolved.
The game is played multiple times between two players and the actions in the
previous rounds are remembered. Defection is no longer always the best strat-
egy, because the point is to get the opponent to cooperate, something constant
defection won’t do. When Robert Axelrod held a competition, allowing anyone
to submit their strategies for this game, and held a round-robin tournament
for the strategies he got, the winner was a strategy called Tit-for-Tat, which
cooperates on the first round and then simply repeats the actions of the oppo-
nent on the previous round. However, the purpose of this paper is not to find
the best strategy, in a round-robin tournament, but to find strategies that are
evolutionarily stable. Although tit-for-tat is not an ESS, the idea of rewarding
cooperation and punishing defection does form the basis of many ESS’s.

One could simulate the evolution of strategies for this game, in order to
look for strategies that are evolutionarily stable. First, a random population
of strategies is generated. Then the strategies play against each other in a
round-robin style tournament. Strategies that do poorly die out, and strategies
that do well copy and mutate, which introduces new strategies. Eventually,
the population will become filled with several copies of identical strategies, and
when a different strategy gets introduced it dies out immediately. When this
happens we have what is called an evolutionarily stable strategy, or ESS.

The iterated prisoner’s dilemma actually has no ESS’s. This simulation will
just cause the population to change constantly without settling on one strategy.
It was shown by Lorberbaum that if random noise is introduced, and we have a
probability that the strategies will make mistakes (cooperate when they mean
to defect or vice versa), ESS’s do appear. Say we have a probability constant
e, where 0 < e < 1

2 , then the strategies cooperate with probability e or 1 − e
instead of probability 0 or 1. Lorberbaum only looked at strategies that can
look at the previous round and make decisions based on that, and he found that
of the 16 possible such strategies, three of them were ESS’s:

• Pavlov-e: cooperates with probability 1− e if and only if both it and it’s
opponent cooperated on the previous round or defected on the previous
round, otherwise it defects with probability 1 − e (only an ESS if 2R >
T + P )

• Grudge-e: cooperates with probability 1 − e if and only if both it and
it’s opponent cooperated on the previous round, otherwise it defects with
probability 1− e (only an ESS if R+ 2S < 3P )

• AllD-e: defects with probability 1 − e after all histories (ESS under all
payoff conditions)
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2 n-Move-Memory Strategies

We can generalize Lorberbaum’s results by allowing the strategies to have a
longer memory.

Definition 1. An n-move-memory strategy is a strategy that is allowed to look
at the past n rounds to make its decision.

Because each round has 4 possible plays, and each history has two possible
responses, the number of n-move-memory strategies is 24

n

. This number gets
very large very quickly, as n increases, and that can make these strategies diffi-
cult to work with. There are only 16 1-move-memory strategies so it’s easy to
find all ESS’s, but there are about 65,000 2-move-memory strategies, and the
number of 3-move-memory strategies is about 18 billion billion.

2.1 A Strategy’s Genome

We characterize a strategy by giving it a set of instructions, or what to play after
every possible history. We’ll use the example of a two-move-memory strategy
X. There are 16 possible histories, so we’ll first list out all of them, and after
those we’ll say what the strategy will do after that particular history.

X D D
opp D D

C
X D D
opp D C

D

X D D
opp C D

D
X D D
opp C C

C

X D C
opp D D

D
X D C
opp D C

D

X D C
opp C D

C
X D C
opp C C

D

X C D
opp D D

D
X C D
opp D C

C

X C D
opp C D

C
X C D
opp C C

D

X C C
opp D D

C
X C C
opp D C

C

X C C
opp C D

C
X C C
opp C C

C

By assigning C = 1 and D = 0, we can create a genome for strategy X like
this:

X = {1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1},

These genomes can easily be generalized into any n-move-memory strategy.

2.2 Calculating the Expected Payoff

We generalize the method from Nowak 1995 to calculate the expected payoff
between two strategies. We’ll use the example of these two random 2-move-
memory strategies:
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X = {1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1},

and

Y = {0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1}.

We want to find the average long-term payoff per round between these two
strategies, where the number of rounds approaches infinity and the probability
of error approaches zero. There are 3 runs that these two strategies can get
caught up in. They are, along with the payoffs X will receive from them:

A
X D D C D C C
Y D D D C C D

2P+2S+T+R
6

B
X C D
Y C D

R+P
2

C
X C
Y C

R

There are twelve ways a perturbation can happen in state A. Seven of them
lead back to state A, four lead to state B and one leads to state C. In state B,
there are four ways a perturbation can happen, and they all lead to state A.
There are two ways a perturbation can happen in state C, and they both lead
to state A. So, the transition matrix between the states looks like this:

from
A B C

to
A
B
C

 7
12 1 1
1
3 0 0
1
12 0 0


This matrix has a right eigenvector of { 1217 ,

4
17 ,

1
17}, and taking the dot prod-

uct of that with the three payoffs, we get our expected payoff for strategy X:
V (X|Y ) = 6P+4S+2T+5R

17 .

2.3 Finding a Strategy’s Best Response

Every strategy X has a best response Y ∗. This is the strategy that satisfies, for
any other strategy Y and Z, V (Y ∗ |X) ≥ V (Y |X) and if V (Y ∗ |X) = V (Y |X),
then V (Y ∗ |Z) ≥ V (Y |Z). If Y ∗ = X, then X is an ESS. We’ll be looking for
ESS’s by finding strategies with themselves as their own best response.

Because the number of possible strategies becomes very high when n is
increased, a brute force algorithm for finding a strategy’s best response becomes
difficult. To simplify the search, we need to make rules that will narrow it down.
Most of these follow naturally from the rules set by Lorberbaum, while others
take some altering.

Rule 1. The best response to any n-move-memory strategy is another n-move-
memory strategy.

Proof. Say X is an n-move-memory strategy with optimal opponent Y . X has
4n states, corresponding to how X behaves after each of the 4n histories. Say
for some history h, X will play X(h). Y has some best response to this, and
that response will not change for any of the plays before h. This is true for all
h, meaning Y would want to look back the same number of rounds as X would,
making Y an n-move-memory strategy.
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Rule 2. The best response to n-move-memory strategy Y only needs to deter-
mine if it will cooperate or defect based on the previous n− 1 rounds, as well as
what Y will do in the current round.

Proof. Say hn is the n-move history, or the previous n plays. Y will use this
history to decide it’s next play. After it’s done that, the least recent play in
hn doesn’t matter, and doesn’t decide how well the opponent does. So, the
opponent should do whatever will give him the best payoff in the long run,
which would be determined only by the history hn−1 and Y ’s next play.

Now, the plays Y needs to look at are the previous n− 1 rounds, or 2n− 2
plays, as well as whatever X is planning on doing in the current round. This
is a total of 2n − 1 plays, each with 2 plays that could happen on them and 2
responses for Y . This cuts down the number of possible best responses to an
n-move-memory strategy to 24

2n−1

, or the square root of the total number of
possible strategies.

3 Pavlovian strategies

Definition 2. A Pavlovian strategy Pn is an n-move memory strategy that
cooperates if and only if for some k where 0 ≤ k ≤ n, both strategies cooperated
on the past k moves and defected on all n− k moves before that.

P1 is the Pavlov strategy from above. Pavlovian strategies do well because
they can “communicate” with each other, and tell each other that they’re the
same strategy, and they want to cooperate to improve their own population.
Additional similar ESS’s can be found by looking for other strategies that do
this.

Theorem 1. If (n+ 1)R > T + nP , then Pn is an ESS.

Proof. Say Y ∈ S, and Y 6= Pn. We know that V (Pn|Pn) = R. If Y always
generally plays the same moves as Pn, then V (Y |Pn) = R. (Now show the other
part of ESS)

Now say at some point Y ’s behavior deviates from that of Pn; that is, Y
either cooperates where Pn defects or Y defects where Pn cooperates. First, say
Y cooperates and Pn defects. Then Y will receive payoff S, and for the next n
rounds Pn will defect, giving Y a payoff no higher than nP . So for those n+ 1
rounds, Y will receive an average payoff of S+nPn+1 , which is certainly less than R
because S < R and P < R. This means that there is no way Y can get a higher
payoff than Pn afte0r Y cooperates and Pn defects.

Now, say Y defects where Pn cooperates. From this, Y receives payoff T
and Pn will defect for the next n rounds, giving Y a payoff of no higher than
nP . That means for those n+ 1 rounds, Y receives an average payoff of T+nP

n+1 .

By our assumption, (n+ 1)R > T +nP , or T+nP
n+1 < R, meaning there’s no way

Y can get a higher payoff than Pn after Y defects and Pn cooperates.

Note that (n+ 1)R > T +nP ⇐⇒ n > T−R
R−P . So, no matter what the payoff

conditions are, we can find an n high enough so that Pn is an ESS.
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4 Identifier strategies

The reason Pavlov strategies do well is because they are very good at deter-
mining if their opponent is another idential Pavlov strategy, and cooperating or
defecting accordingly. There are other ways that strategies can do this. Pavlov
strategies are one example of an identifier strategy, so called because they can
identify if their opponent is an identical opponent to themself. Each identi-
fier strategy starts out with some kind of pattern of defection and cooperation,
which it only continues if the opponent matches that pattern (otherwise it de-
fects), and when that pattern ends and the two players are sure that they’re the
same strategy, they play some other pattern with each other. These patterns
do not necessarily need to be as long as the strategy’s memory, but the lengths
of them do have limitations.

An identifier strategy will be denoted as Ip,qn . n is the length of the strategy’s
memory. p in base 2 is the pattern the strategy will follow, starting after n
defections, only continuing to follow the pattern if the opponent does also. q
is the pattern the strategy will repeat after p. We can see that I0,1n = Pn and
I0,00 = AllD.

For example, take I5,23 . This strategy has a 3-move-memory. Because 5 =
0001012, the strategy first defects three times, then cooperates, then defects,
then cooperates. If the opponent does the same thing, then this tells I5,23 that
it could be playing against an identical strategy, so it goes into the q phase.
2 = 102, so the strategy will then cooperate, then defect, and then continue this
forever, as long as the opponent does the same thing. After any communication
errors, the game will always default back to the q phase, so V (I5,23 |I

5,2
3 ) = P+R

2 .
Generally:

V (Ip,qn |Ip,qn ) =
P (b1 + log2 qc − weight(q)) +R× weight(q)

b1 + log2 qc
,

where weight(q) is the Hamming weight of q.
Under what conditions Ip,qn is an ESS would be a possibility for future study.

5 Grudgian strategies

Definition 3. A Grudgian strategy Gn is an n-move-memory strategy that co-
operates if and only if the play from n rounds previous (or the least recent play
that Gn can remember) was Gn and the opponent both cooperating. Otherwise,
Gn defects. What the players did on the other n− 1 rounds is irrelevant.

In a game between Gn and another Gn if either player defects, then both will
continue to defect after multiples of n periods. The only circumstances in which
both players will cooperate is if it is one of the initial n−1 rounds, it is n rounds
after both have cooperated, or there is an extremely improbable simultaneous
communication error which we’re calling too improbable to consider. After a
while, a communication error will have occured enough times that neither side is
cooperating, and the long-term payoff the players will receive is the punishment.
So, V (Gn|Gn) = P .

Gn where n > 1 could be thought of as a “delayed” Grudge strategy. To
simplify the way that Gn plays against its opponents it makes sense to think of
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a game against Gn as n separate games against G1, all mixed together. This
way, it’s easier to find a best opponent.

5.1 Responses to Gn

As a notation, during a game with Gn as a player, we say that we are in state
Tm if Gn cooperated for m of the past n rounds (0 ≤ m ≤ n). As will be made
clear later, the different possible permutations of Tm are interchangeable, so we
only need to look at the n+ 1 possible states.

Definition 4. Gαn is a response to Gn. If the players are in state Tm, then Gαn
operates as Gn if m ≥ α and AllC if m < α.

(Note that G0
n = Gn and Gn+1

n = AllC.)
The idea behind Gαn is that, depending on the payoff conditions, it might be

beneficial to an opponent to try and get Gn to cooperate only if Gn is cooper-
ating below some threshhold. Otherwise it might be a waste for an opponent
to get Gn to cooperate further.

Now to find V (Gαn|Gn), we have to create a general transition matrix A.
Entry Ai,j of this matrix will be the probability of progressing from state Tj to
state Ti. If i < j − 1 or i > j + 1, Ai,j = 0. Otherwise:

Ai,j =



i+1
n , if i = j − 1
n−i
n , if i = j and j ≥ α
n−i
2n , if i = j and j < α

0, if i = j + 1 and j ≥ α
n−i+1

2n , if i = j + 1 and j < α

Next is to find the eigenvector, or the vector −→v such that A−→v = −→v . So for
all i, where 0 ≤ i ≤ n, we want −→v i =

∑n
j=0
−→v jAi,j = −→v i−1Ai,i−1 + −→v iAi,i +

−→v i+1Ai,i+1. Or:

−→v i =
1

1−Ai,i
[Ai,i−1

−→v i−1 +Ai,i+1
−→v i+1]

=


(i+1)−→v i+1

i if i > α
(−i+n+1)−→v i−1+2(i+1)−→v i+1

2i if i = α
(−i+n+1)−→v i−1+2(i+1)−→v i+1

i+n if i < α

First, we know that −→v i = 0 when i ≥ α because Gαn won’t bother to increase
cooperation when cooperation is already above α, so we can add that to the
equation.

−→v i =


0 if i > α
(−i+n+1)−→v i−1

2i if i = α
(−i+n+1)−→v i−1+2(i+1)−→v i+1

i+n if i < α

We’ll show through an inductive argument that for any i where 0 < i ≤ α,

vi = (−i+n+1)−→v i−1

2i . The base case is i = α, for which we already know this is
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true. We’ll go backwards from there. Assume that for some k, where 0 < k ≤ α,

vk = (−k+n+1)−→v k−1

2k . We also know that −→v k−1 = (−k+2+n)−→v k−2+2k−→v k
k−1+n , and

substituting what we assume −→v k to be, we get:

−→v k−1 =
(−k + n+ 2)−→v k−2 + (−k + n+ 1)−→v k−1

k + n− 1

After simplifying we get:

−→v k−1 =
(−k + n+ 2)−→v k−2

2(k − 1)

So by the property of mathematical induction, vi = (−i+n+1)−→v i−1

2i for any 0 <
i ≤ α.

Now we’ll want to find what −→v i is in terms of −→v 0. This is easy from looking
at the first few values:

−→v 0 = −→v 0

−→v 1 = −→v 0
n

2

−→v 2 =
(n− 1)−→v 1

4
= −→v 0

n(n− 1)

2× 4

−→v 3 =
(n− 2)−→v 2

6
= −→v 0

n(n− 1)(n− 2)

2× 4× 6
...

−→v i = −→v 0
n(n− 1)(n− 2) · · · (n− (i+ 1))

2× 4× · · · × 2i

= −→v 0
1

2i

(
n

i

)
Remember, this is only for 0 ≤ i ≤ α. For i > α, −→v i = 0.
To normalize −→v , it would be easier to just set −→v 0 = 1

N , and then create a
normalizer N .

1 =

α∑
i=0

−→v i

=

α∑
i=0

1

N

1

2i

(
n

i

)

N =

α∑
i=0

1

2i

(
n

i

)

The payoffs for Gαn in state Tm is mR+(n−m)P
n if m ≥ α and mR+(n−m)S

n if
m < α. Now we can find the value of V (Gαn|Gn):
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V (Gαn|Gn) =

α−1∑
m=0

(
−→v m

mR+ (n−m)S

n

)
+

n∑
m=α

(
−→v m

mR+ (n−m)P

n

)

=

[∑α−1
m=0

(
1
2m

(
n
m

)mR+(n−m)S
n

)
+
(

1
2α

(
n
α

)αR+(n−α)P
n

)]
∑α
i=0

1
2i

(
n
i

)
This equation either grows or shrinks as α grows, depending on the payoff

conditions. More specifically, if R + 2S < 3P , V (Gαn|Gn) > V (Gα+1
n |Gn), and

if R+ 2S > 3P , V (Gαn|Gn) > V (Gα−1n |Gn).

Rule 3. A best response to Gn will generally cooperate when Gn generally coop-
erates, and depending on the payoff conditions should either generally cooperate
or generally defect when Gn generally defects.

Proof. Say Y is the best response to Gn. Y would rather get the reward than
the punishment, and defecting when Gn cooperates will get him the temptation
payoff immediately but every n rounds after that will get him the punishment,
when he could have gotten the reward for those rounds.

For the second part of the rule, Gn doesn’t look at the previous n − 1
rounds.

This rule implies that Gn’s best response is either Gn or AllC.

Theorem 2. If R+ 2S < 3P , Gn is always an ESS.

Proof. Gn’s best response is eitherGn orAllC. V (Gn|Gn) = P , and V (AllC|Gn)
is equivilant to V (AllC|G1) = R+2S

3 , because a game against Gn is the same as

n games against G1. Therefore, Gn’s best response is itself when P > R+2S
3 or

R+ 2S < 3P .
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introducing the vector notation—I don’t think you ever use it again, and 
instead displaying both strategies X and Y in the table in the following manner: 
Period -2 -1 0 
X D C D 
Y C D D 
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What is true is that if Y1 and Y2 are both best responses to X, then V(Y1|Z) = 
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equally well in all environments.  However, other strategies may do more or 
less well against Y1 and Y2 (e.g., see that A does better against C than against 
B). 
 
All this suggests that the first paragraph should just define best response and 
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definitions. 
P4 S2.3 Always Defect and Always Defect except in round 17 are both best responses 

to Always Defect (using the limit average payoff).  Thus, Rule 1 is false.  Rule 
1 with the initial “The” replaced with “A” may be true, but given that best 
responses may not exist, we cannot assume the existence of such a best 
response as is done in the first sentence of the current proof.   
 
In fact, I think that even this modified Rule 1 is false when 2R > T + P.  Let X 
be the strategy D if both players agreed in the previous period and D otherwise.   
Let Y1 be the strategy X if both players agreed in the previous period and D 
otherwise.  Let Y2 be the strategy C if both players defected in the previous 
period and D otherwise.  Then V(Y1|X) = V(Y2|X) = T.  For any other 1-
move-memory strategy Y, V(Y|X) < T.  Let Z1 be the strategy D if both 
players defected in the previous round and C otherwise.  Then V(Y1|Z1) = (R 
+ 2T)/3 < T = V(Y2|Z1).  Let Z2 be the strategy D if the player cooperated and 
the opponent defected in the previous round and C otherwise.  Then V(Y1|Z1) 
= R > (R + T +  P)/3 = V(Y2|Z1).  Hence, there is NO 1-move-memory 
strategy that is a best response to X.  Thus, either there is NO best response 
strategy or any best response strategy must have more than 1 move of memory.  
In either case, this shows that Lorberbaum’s Rule 1 is false! 
 
Of course, all of the above payoffs are really limits as the probability of 
communication error ε approaches 0. 

P5 T1 Provide some explanation for why V(Pn|Pn) = R.  Again this is for ε → 0.  To 
find the actual value for a particular ε > 0 might require finding the dominant 
eigenvector of the transition matrix for the 4n possible states. 
 
Here is a shorter version of one part of the proof:  Suppose Y is a strategy such 
that V(Y|Pn) > R.  Since R is the second largest single period payoff, in the 
long run Y must obtain T with positive probability.   When Y obtains T, Pn 
responds with at least n defections.  For Pn to C requires Y to D during n 
periods.  Hence, the most Y can obtain on average is (T +  nP) / (n+1), which 
is less than R according to the argument you already have. 
 
As you have noted, the remainder of the proof involves showing that if Y is a 
strategy satisfying V(Y|Pn) = R and Z is any strategy, then V(Pn|Z) ≥ V(Y|Z).  
Since V(Y|Pn) = R, the earlier argument tells us that Y must almost always be 
receiving R.  This means that Y must choose C while Pn chooses C, and since 
communication errors are possible, Y must choose D n times in a row “soon” 
after a period when one or both players choose D.  This gives some handle on 
what Y must look like.  Perhaps more could be said.  Then perhaps one could 
assume that V(Pn|Z) < V(Y|Z) for some strategy Z, and then come to a 
contradiction..   

P6 S4 The idea of identifier strategies is interesting, and they can be clearly be 
implemented using finite state machines; however, it is not clear to be that they 
can usually be implemented as finite memory strategies because they must 



know whether they should be following pattern p or pattern q. 
 
Shouldn’t 𝐼𝑛

0,1 = 𝑃𝑛+1?  And shouldn’t a communication error reset back to the 
beginning rather than to the q phase? 

P7 middle Ai,j must be incorrect because ∑ 𝐴𝑖,𝑗𝑖  should equal 1 for each j but it does not.  
It appears that you may be assuming that the C’s in a Tm are randomly 
distributed across the n periods.  I am not going further until there is more 
explanation and correction. 
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