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Abstract: Reasonableness, Monotonicity, and Rationality

This paper wi+il examinesdifferent cost allocation methods
for superadditive cooperative games in regard to the properties
reasonableness, monoton1c1ty, and rationality. Because on 3-
person games a special condition concerning reasonableness holds,
the group of games with four or more players is examined more
intensively, to better represent the general class of
superadditive n—person games. My research covers the three
properties with respect to the Shapley Value, Nucleolus, Tau
Value, Banzhaf Value, and the Nucleolus of the Anticore Dual
Game.

Introduction
Consider a game (N,v), where N = ( 1, 2, 3,...,n) is the set
of players and v is a real-valued function defined on all
coalitions SCN satisfying v(g) = 0. The vector x = {x.,

X=,..-3X~} gives each player i an allocation xs:. we.asuwm.%hmﬁﬂﬂm
b«upw’fkitwm

Player i1's marginal contribution to coalition S is defined
as v(S) - v(S - {i}). John Milnor (1952) proposed that a
reasonable payoff allocation x:, for player i, should be no more
than i1°'s maximum marginal contribution. :

Rationality insures that each player, either individually or
as part of a coalition, will receive at least the1r stated worth.
To accept less than one started with would.be "irrational."

Monotonicity insures that the allocation a player receives
fluctuates accordingly if a coalition containing that player
increases or decreases in value.. Certainly a player whose payoff
has decreased while their stated worth has increased would not
be satisfied.



Convey ?

Definitions

A game (N,v) satisfies superadditivity if v(SUT) 2 v(s) + v(T)
S and T satisfying SNT = .

The set of imputations I={x¢cR" : Z Xz =v(N) and x: 2 v(i) for all

ieN?} ieN
This set is also known as the individually rational set.

The group rational set, also known as the core, C.
C={xR™ : L x: =v(n) and ¥ xz 2 v(S) Y ieN3}.

1€eN 1€8
A payoff vector b = (b;z; : ieN) is called individually
reasonable iff it satisfies by £ max (Vv(S) — v(S - {i})) YV ienN
S31

The set of all b:'s is denoted B.

The anticore, A, is defined as the set of all imputations that
are group reasonable such that for every S,

Losy % oman [(T)— vlT = S)1.
S3i TS

An allocation procedufe P is aggregate monotonic if for any games

(N,v) and (N,w),
VIN)2Ww(N) and v(S)=w(S) V SCN 3 P:(v)2P.(w) V ieN.

An allocation procedure p is group monotonic if for any games
(N,v) and (N,w),

V(T)2w(T) for some TCN and v(S)=w(S) Y S#T, SCN P« (V) 2P: (w) for

all igeT.

The Shapley Value for player i is the average of the marginal
values player i brings to the coalition of all players over all

possible individual orderings. More specifically,
PalN,vi= L (s=1)i(n=s)! [v(8)—v(5=(i})]
SCN n'
where s = |S|, and n is the number of players in the
game.

The Banzhaf Value for player i is, after zero normalization,
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proportional to the sum of the marginal values player i brings to

each possible coalition.

Y I[Vv(S) — v(5-{i}) — wv(i)]
Be vl wiid+  {eotN [viN)=) v(j)
i 2 [v(S) - v(S—{i}) - v(i)l jeN
JjeN  jeSCN

The Nucleolus is the imputation that minimizes e(x)

1



lexicographically.
e(x,5) = v(s) - Yics %: is’ the excess of group S relative to the

cost allocation x.JC»»«J. ely) is ba vecke ok e(x,5) ordesed From )&rff»" #SM&}&M}'

The Tau Value gives player 1 a compromise payment between a
maximum and a minimum, determined by separable values. The
maximum payoff to an individual is no more thanm his or her
separable value, so we define M as follows:

M: = Vv(N) — v(N=-{1}).

The minimum payoff player i should accept is the grand coalition
less all the other players’ separable values, defined as:

p: = max {v(S) - Z My @ 1&SCN3}.
jes—{1i2

The Tau Value on quasibalanced games is defined as:
Te(N,v) = Ape + (1-A)My

where

A = i=1 5
n n
Z:ML_ZIJ.L
1=1 i=1

The Anticore Dual Game is defined as (N,Jb) where
P(S) = max [V(T)-v(T-S)1 for all SCTCN as given by .the original
(N,v) game.
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1% Three Person Games

For three perscn superadditive games, an allocation that 1is
individually rational (i.e., in the set of imputations 1) and
individually reasonable is also group reasonable. The anticore A
equals the intersection of B with I (Shubik, 1982). Therefore,
the following values are group reasonable for n=3: Shapley Value,
nucleolus, per capita nucleolus (Jew, 198%9), the Tau Value, and
possibly the Banzhaf Value.

Theorem 1: A = BNl Y 3-person superadditive games.

Proof:

Step 1.(A) Must show ACB.

The members of A that are eligible for membership in B are the
singeltons {(i}'s.

x:2 £ max [v(T) — v(T-{i})] = b: =2 x: £ b: = ACB.
T3{12}
(B) Must show ACI.
Let S = {(jk}, x € A.
We know x5 + xu. £ max [v(jk)-v(@®), v(ijk)—-v(i)],
£ v(N)-v(1) by superadditivity,
Xy + X = V(N)—-x: by efficiency, so
V(N) = xz2 £ v(N) = v(1),
X: 2 v(i) 3 x€6 1 3 ACI.

ACB and ACI = ACBNI.

Step 2. Must show BRICA.
(A) Singletons. Look at x: €BNI.
v(i) £ x: £ bse = max [Vv(S) - v(S5—{i})]
then certainly x: £ max [Vv(T) — v(T-S)], where S={i}, -
T3S
3 X EA.

(B) Pairs. Look at x:, x5 € BNl:

x: + x5 = v(N) - x. by efficiency,
£ v(N) - v(k) by individual rationality,
= max. [v(l) — vi(T-{13})] by superadditivity,
T3(137}

= N A = s
5 BNICA.

BNI1cCA and ACBNI 2 BNI=A .O

Because the Shapley Value, Nucleolus, Per Capita Nucleolus,
and Tau Value are individually rational and individually
reasonable, they are group reasonable and contained in the irR—the
anticore for three person games. While I know that the Banzhaf
Value is individually rationmal, I have not been able to prove
individual reasonablenss, so I can only propose that the Banzhaf
Value is group reasonable for three—person games.



Step 1 of the previous proof will extend equally well to
other n—person games. This means that Group Reasonableness
implies individual reasonableness and rationality and that the
anticore, when nonempty, is contained within the intersection of
B (individually reasonable) with I (individually rational) for
all n—person games. :

2. Games Wiih Four or More Players

2.1 Rationality

The Shapley Value is individually rational by definition:
(s=1)!(n—-s)!
Z n! = 1 and v(S)-v(5-{1}) 2 v(1i) for all SCN.
SCN

The Shapley Value is not in the core C for all superadditive
games, but 1s always group rational for convex games.

3

By definition, the Nucleolus 1s individually rational. By
examining the similarities between the definitions of the
Nucleolus and a nonempty core, 1t can be shown that the Nucleolus
is group rational (Jew, 1989).

The Banzhaf Value is individually rational by definition.
The Banzhaf Value is not group rational for all superadditive Shwcﬁuvk
games, but I believe the value is in the core for convex games. (wﬁcpmmf
I have not yet been able to prove or dlsprove my proposal, but I ﬁ“’“)
intend to continue trying.

For all superadditive quasibalanced games, the Tau Value is
shown to individually rational by definition in a proof by Curiel
(1988), which I will not reprint here. As with the Banzhaf
Value, a sampling of random gquasibalanced convex games has led me

Thse Is e procf thet is
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’? to believe that the Tau Value is in the core for convex games.
< Again, I have yet to prove or find a counterexample to my
:E proposal.

e by R0 bk i

§’£ 'Thﬁ negative Nucleolus of the Anticore Dual Game
g_g [-V(N,—v)] is individually rational in the original (N,v) game,
2 because the negative nucleolus 1s in the anticore of the original
‘§( (N,v) game (to be proved later) and by Theaorem 1,

A(N,v) C I(N,v). For convex games, the negative nucleolus is in
the core of the original game, because C=A for convex games
(Housman, 19%0).

TR Qi(’cj

Theorem 2: C=A for convex games.

Proof:
Lemma: If v 1s convex, then
V(N)=-Vv(N-S) = max [v(T)-v(T=-S) : TIS].



Proof of Lemma: Suppose SCTCN. Then TU(N-S)=N and
TA(N-S)=T-5. By convexity,
v(T) + Vv(N=S) £ v(TU(N=-S)) + v(TN(N=-S)) = v(N) + v(T-S).
So, v(T) = v(T=-S) £ v(N) - v(N-S).

@ x(S5) £ v(N)-v(N-S5) for all SCN
@ V(N=-5) £ v(N)-x(S) for all SCN
& V(N-5) £ x(N-S) for all SCN

& xeC(v).o

Now, x€A(v)

2.2 Reasonableness o
By definition, the Shapley Value is individually reasonable
for all superadditive games. The Shapley Value is group
reasonable for three person games by Theorem 1, and four person
games by the extension of Theorem 1 and the fact that
P + Ps (1/6)IVvIN)-v(kl)] +(1/6)[Vv(N)-Vv(jkl)+v(j)]
(1/6)Iv(N)=v(ikl)+v(i)] + (1/6)[v(ijl)-v(1l)]
(1/76)[v(ijk)-v(k)] + (1/6)[v(1ij)]
max [v(T) — v(T-{ij}) = TI{ij}].
The Shapley Value is also group reasonable for all convex games.
Jew (1985) Prescubs o S plager Gt hawisy froup reasearbh cllocetvis bt Sy Sinpl, Volu s watont.
By Jew (198?9), the Nucleolus is individually reasonable
because it is lexicographically minimal. By Theorem 1, the
nucleolus is group reasonable for three player games, and is in
the anticore for convex balanced games otherwise, since for
convex balanced games the core (which equals the anticore) is
nonempty, and the nucleolus is always contained in the core. =

A+ + 1

The complexity of the Banzhaf Value makes its analysis
exceedingly difficult. By examining randomly obtained
superadditive and convex games, I can propose (but not prove)
that the Value 1is individually reasonable for all superadditive
games and group reasonable for all convex games. The Banzhaf
Value is not in the anticore foq‘nonconvex games, as is shown by {e'
the four—-player game below: e !
V(1)=v(2)=v(3)=v(4)=0 v(12)=.405 v(13)=.494 v(23)=.250 ’1J4t’{0/?
v(14)=.462 v(24)=.256 v(34)=.086 Vv(123)=.583 \
v(124)=.680 v(134)=.960 v(234)=.379 v(N)=1, where
B {322, 16242, 2275

The Tau value is always individually reasonable, by a simple
proof (Housman, 19%90).

Proof:
By definition of M., M: £ b:, and because the game is
quasibalanced, pi £ b:i. Thus T<(N,v) = Ape + (1-A)Me £ Abse +

(1-3)bs = be.D

I suspect that the Tau Value is also group reasonable, as I have
not been able to find a counterexample. But this still needs to
be proved. I have not yet looked at non—gquasibalanced games.



The negative Nucleolus of the Anticore Dual Game is, by —_
definition, individually and group reasonable in the original
(N,v) for all Ssuperadditive games.

253 Monotonicity

The Shapley Value is well known ﬁo be both aggregate and
group monotonic (Young, 1985) for all superadditive games.

class of all superadditive games (Jew, 1989). The convex zero-
normalized game v(l2)=.1, v(13)=.15, v(23)=v(24)=.2, v(l4)=.14,
v(34)=.23, v(123)=v(134)=v(234)=.45, v(124)=.65, v(N)=1 gives the
nucleolus y = 1.249, .274, =175, <3033, Upon decreasing v(124) %
to .5 (the game retains convexity) and V = 1-25, .25, = 200y 255, S
thus the nucleolus is not group monotone for even convex games. §
<X
3
0
?
~

2
; %
The Nucleolus is not uniformly aggregate monotonic over the ~é

I believe, but have not yet proved, that the Banzhaf value
1s group monotone. Because the partial derivative of the Banzhaf
value with respect to V(N) is shown to be nondecreasing, the
value is proved to be aggregate monotone for all superadditive g
games (Léotard, 1990).

WNﬁk“‘w

. 1
n .
The Tau value fails tests of aggregate and group monotocity dwﬂk‘
for many superadditive quasibalanced nonconvesx games, but 17

believe the value is aggregate monotonic on convex games. T
Because the partial derivative of the Tau Value for player i (for SUJWU*h
a convex game) with respect to coalitions containing i is shown G, st
to be nondecreasing, the value is proved to be group monotonic e, O/
for all convex quasibalanced games. : Pl {?

I have not yet examined the negative nucleolus of the
Anticore Dual Game; I believe that the value will react towards
monotonicity in a similar manner as the regular Nnucleolus of the
original (N,v) game.

St Values with Two Properties

An allocation procedure satisfying more than one of the
group reasonableness, group rationality, and group monotonicity
properties would certainly be more agreeable to the players of
the game.

3.1 Group Rational and Group Monotone

Young (1985) and Jew (1988) show that there exists no
allocation method that is both group rational and group monotone
on games of [N|] 24. For convex games, however, the Shapley Value
is both group rational and group monotone. The Tau and Banzhaf
values are also potentially both group rational and group
monotone for convex games.



3.2 Group Rational and Group Reasonable

Jew (1989) shows that the Shapley Value and nucleolus are
not both group rational and reasonable consistently over all
superadditive games. O0On convex games, however, the Shapley value
and nucleolus are both group rational and reasonable. The Tau
value is not both group rational and group reasonable over all n-
person games, but may have both properties in convex
quasibalanced games. I have also found three and four person
games with nonempty cores where the Banzhaf value is group
reasonable but not group rational, thus, like the Tau value, this
value does not have both properties consistently over all n-
person cooperative games, but may have over the class of convex
games. The negative nucleolus of the Anticore Dual Game has both
properties over all convex games and wherever else the allocation
1s group rational for the original (N,v) game.

3.3 Group Reasonable and Group Monotone

Jew (1989) showed that the nucleolus is not both group reasonable
and group monotone. The convex game described earlier to show
that the nucleolus is not group monotone proves that the
allocation can never have both properties for even convex games.
The Shapley Value has both properties for all superadditive three
and four player games, and for convex games otherwise. I
believe, but need to prove, that the Tau and Banzhaf values
possess both properties as well for convex games.

4. Suggestions for Future Study

15 Complete the chart in Figure 1, and extend to other values.
Create linear programs to find any possible counterexamples.

2 Characterize games for which A=BNI. A#BNI over the class of
all superadditive four-player games, but perhaps has
equality when certain restriction are added.

3. Characterize games for which A#¢. Look at the Anticore Dual
Game: 1n general, members of the negative core of the (N,—-v)
game will be members of the anticore of the normal (N,v)
game (Housman, 1990). In this manner we can tell when the
anticore of a normal game is nonempty. Also, beeause the
Shapley value is group reasonable in the class of all
superadditive four player games, the anticore is nonempty
there.

4. Examine monotonicity properties of the negative nucleolus of
the Anticore Dual Game.

De. Axiomatically characterize the anticore as a solution
concept.



References
Curiel, Imma. Cooperative Game Theory and Applications. Some
Dutch Town: Some Dutch Publishing Company, 1988, pp. 57-90.
Housman, David. Personal Communications. Drew University, 1990.

Housman, David. Personal Communications. SUNY at Stony Brook,
19%0.

Jew, Lori J. Properties of Allocation Methods. Senior Thesis,
Worchester Polytechnic Institute, 1989.

Leotard, Marc. Personal Communications. SUNY at Stony Brook,
1990.

Shubik, Martin. Game Theory in the Social Sciences. Cambridge,
Mass.: The MIT Press, 1982, pp.336—-338. J

Young, H.P. Monotonic Solutions of Cooperative Games.
International Journal of Game Theaory 14 (1985) &5-72.



DREW UNIVERSITY

Department of Mathematics
and Computer Science
College of Liberal Arts

Madison, New Jersey 07940-4037
{201) 408-3 1061

August 20, 1990
Kathryn Jane Grande
436 Windfield Place
Lexington, KY 40517

Dear Jane,

I hope that you have been able to relax after eight weeks of mathematics. Unfortunately, I
have had administrative work for the Council on Undergraduate Research, lectures for the New Jersey
Governor’s School, and software library development for Introductory Statistics. Jeanne and I took a

few hours off for our anniversary, but now I’m back finishing up REU stuff.

I have enclosed (1) a request for an evaluation of the progfam, (2) the original of your REU
report upon which I have written a number of suggestions, (3) a copy of participants’ whereabouts, and
4) a copy of Lori Jew’s thesis. Please return your evaluation to me by September 17. If you would
like a revised copy of YO\;I' report to be sent to the NSF and other interested persons, please return your
reYision by Séptember 17. T have held off sending out copies of student reports pending each student’s
decision whether or not to revise. There is no requirement to revise your report; it is up to you based
upon your time and interest. You requested only reports that might be necessary or helpful. In late
September, I will send you a copy of my monotonicity paper. If there are any articles I discuss below

which you do not have, I can also send you copies. Just let me know.

You undertook a very open-ended area and did a good job of organizing the morass. In
addition, you obtained three nice and original results: the Shapley value is group reasonable on four
player games, the Banzhaf value is aggregate monotone on superadditive games, and the nucleolus is
not group monotone on all convex gameé (in fact, your example can be used to show that the nucleolus
is not even aggregrate monotone on all convex games). Unfortunately, you did not really have
sufficient time to complete the organization of the morass and so your report suffers in several
substantial ways. First, incorrect proofs are given for the individual rationality of the negative anticore
dual game nucleolus and for the Banzhaf value not being group reasonable on all games having group

reasonable allocations. Second, proofs are missing for the aggregate monotonicity of the Banzhaf value



and the group (or is it aggregate?) monotonicity of the tau value on convex games. Third,
counterexamples are missing that show the Banzhaf value is not group rational on some games
containing group rational allocations and show the tau value is not aggregate monotone on a
nonconvex quasibalanced game. Fourth, there should be definitions of the following format for each of
the six properties of interest: a value # has property P at the game (N, v) if condition C holds.
The rational and reasonable definitions you have relate to allocations not values, and the monotonicity
definitions are for the class of all games rather than a specific game or subclass. Fifth, I do not think

that the section on values having two properties adds any further information to the report.

Having had a few weeks to let the dust settle, I now would not use the term “dual,” because
the dual of a dual is not the original game although the dual of a dual usually is the original object
when the term “dual” is used. I will devote the next few paragraphs showing you how I would develop

this material now.

Definition. Suppose (N, v) is a cooperative game. The group reasonable cover of v is the

function ¥ defined by ¥(S) = max { v(T) — v(T\S): SC T} forall SCN.

Proposition. Suppose (N, v) is a cooperative game, and v is the group reasonable cover of
v. If v is superadditive, then —V is superadditive. Further, x is individually [resp., group]

reasonable in (N, v) if and only if —x is individually [resp., group] rational in (N, —¥).

Proof. Suppose v is superadditiveand R NS = @. Let T be asupersetof R U S
satisfying V(RUS) = v(T) — v(T\RUS). Then ¥(RUS) = v(T) — v(T/S) + v(T/S) —
v(T\RUS) < ¥(S) + \‘r(R) which implies that —¥ is superadditive. The second conclusion follows
from the observations that ¥(N) = v(N) and x(S) < ¥(S) if and only if —x(S) > —¥(S). The

notation x(S) means ) x;.
i€S

Definition. The group reasonable cover prenucleolus, denoted 7, of the game (N, v) is the
efficient allocation that minimizes &(x) lexicographically where &(x, S) = x(S) — ¥(S) and &(x) is

the vector of &(x,S), S C N ordered from largest to smallest.

Note that the grc prenucleolus of the game (N,v) is simply the negative of the prenucleolus of
the game (N, —V). Now the prenucleolus is individually rational on superadditive games and group
rational on games with group rational allocations. Hence, the Proposition implies that the grc
prenucleolus is individually reasonable on superadditive games and group reasonable on games with
group reasonable allocations. It is somewhat trickier to show that the gre prenucleolus is individually

rational; however, the proof is similar to the standard rationality proofs for the prenucleolus.

The prenucleolus is individually rational on the superadditive game (N,v). Indeed, suppose

x; < v(i) for some i € N. Then for any coalition S containing i, it follows that e(x, S) = v(S)



— x(8) > v(S—i) + v(i) — x(S) > v(S—i) — x(S—i) = e(x, S—i). Consider the allocation y
defined by y;, = x; + (n — 1)¢ and\fj =x; + € for j#1i foran € > 0. Now € can be
chosen small enough so that e(x, S) > e(y, S) > e(y, S—i) > e(x, S—i) for all coalitions S

containing i. Hence, e(y) is lexicographically smaller than e(x). Thus, x is not the prenucleolus.

» The prenucleolus y is group rational on the game (N, v) which has at least one group
rational allocation. Suppose x is a group rational allocation for (N, v). Then x(S) > v(S) for all
_coalitions S. This implies that e(x, S) = v(S) — x(S) < 0 for all coalitions S. Since the
prenucleolus minimizes the maximum excess, e(y, S) < 0 for all coalitions S which implies that

¥(S) > v(S) for all coalitions S. Thus, the prenucieolus is group rational.

The grc prenucleolus is individually rational on the game (N,v). Indeed, suppose x; < v(i)
for some i € N. Then for any coalition S containing i, I claim (and prove below) that &(x, S) <
é(x, S—i). Consider the allocation y defined by y; = x; + (n — 1)e and yij=x; +¢€ for j#i
foran € > 0. Now ¢ can be chosen small enough so that e(x, S) < e(y, S) < e(y, S—i) <
e(x, S—i) for all coalitions S containing i. Hence, e(y) is lexicographically smaller than e(x).
Thus, x is not the grc prenucleolus. I now prove the claim. Suppose that S is a coalition that
contains i. Iam toshow that x(S) — ¥(S) < x(S—i) — ¥(S—i). Since x; < v(i), it is sufficient
to show that ¥(S) > ¥(S—i) + v(i). Let T be a superset of S—i satisfying ¥(S—i) = v(T) —
v(T\(S—i)). K i€ T, then ¥(S) > v(T) — v(T\S) and v(T\(S—i)) > v(T\S) + v(i) which
together yield the desired inequality. If i ¢ T, then ¥(S) > v(T+i) — v((T+i)\S) > v(T) + v(i)
— v(T\(S—1)) which is the desired inequality. = "

Finally, I have a few comments on future study. A completion of the table would involve
characterizing the classes of games on which each value satisfies each property. This is a very hard
project with several inelegant characterization likely. An interesting partial completion of the table is
to ask for each value-property pair whether the value satisfies the property on all games within the
following classes: superadditive, with group reasonable allocations, with group rational allocations,
convex, and n-player for various n. This would make a good undergraduate thesis. In this
connection, you should read several chapters in Theo Driessen, Cooperative Games, Solutions and
Applications. A nice characterization of the games with group reasonable allocations (nonempty
anticore) has more potential for publication. I would first consider “size dependent” games, i.e., v(S)
depends only on the size of S. I think that the general case would require an understanding of the
characterization of games with nonempty core (a proof can be found in G. Owen, Game Theory). Let

me know what you plan to pursue.

I will close with a few words about recommendations. I would be happy to write you a

recommendation for graduate study or employment upon request. It is my policy to always share with



you a copy of my letter of recommendation for you. If there is sufficient time between your request :

and the receipt deadline, I will send you a first draft for comment. You received two good letters of

recommendation when you applied to the REU program. David Shannon’s was better for the REU
program.

Good luck digesting all of this!

Sincerely,

David Housman



