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Abstract: In any cooperative game we are often concerned with
fairly allocating the savings to the players in the game. This
paper introduces a specific cooperative game, called the matching
game, and a procedure for finding the nucleolus and Shapley value

(two fair allocations) for different classes of matching games.

Introduction: An n-person cooperative game is a pair (N.w),
where N = {1,2,3,...,n} is the set of players and w(S) is a real-
valued function from the subsets of N to the real numbers which
satisfies w(g)=0. The subsets of N can be thought of as
coalitions of players in N, and w can be interpreted as the worth
function because w(S) represents the relative worth of the
coalition 5. A cooperative game is called superadditive if
w(SuT) =z w(S) + w(T) for all S5,T € N satisfying 9NT = g. More
plainly, superadditivity ensures that when two or more disjoint
players or coalitions decide to cooperate their worth will be
greater than or equal to the sum of their individual worths.

Many cooperative games can be defined with respect to
graphs. A graph is a finite nonempty set of objects, called
vertices, together with a possibly empty set of unordered pairs

of distinct vertices called edges. In a graph-restricted game



the elements of y are the vertices, and an edge represente a
coalition between two players. A weighted graph is a graph in
which each edge e is assigned a positive real number, called the
weight of e. In a weighted graph game the weight on each edge
corresponds to the worth of a two player coalition, the specific
coalition determined by the end vertices of that edge.

An induced subgraph of a graph G contains a nonempty subset
of the vertices of G, call it U, and all edges of G both of whose
end vertices are contained in U.

Two distinct edges in a graph are called independent if they
are not adjacent (i.e. if they do not share any vertices). A
matching is a set of independent edges. In a weighted graph, a
maximum weight matching is one such that the sum of the weights
of the edges contained in the matching is maximized. The class
of graph games that will be discussed in this paper are called
matching games. A matching game on a weighted graph is defined
by N players which can form coalitions of worth w(S). The worth
of a coalition is the maximum weight matching on the subgraph
induced by the players in that coalition. Edmonds and Johnson
(1970) introduced an algorithm for finding the maximum weight
matching on any graph.

The superadditivity of matching games may not be intuitively
obvious. Consider the disjoint subsets 5 and T of N. The worth
of each coalition is equal to the maximum weight matching on that
subset, which is always =2 0. In combining these two subsets the

maximum weight matching of each could be preserved, in which case

2



w(S;T) = w(S) + w(T). The only basis for breaking up the maximum
weight matchings of each subset would be if it were possible to
find a higher weight matching in the graph SJU7T. Therefore,
matching games are superadditive. An example of a matching game
is illustrated below. In is easy to see that this simple game is
superadditive.
EXAMPLE: w({1,2,3})=15

w({1,2})=15

w({1l,3})=a 15 9

w({2,3})=9

w({1})=w({2})=
w({3})=0

1 a € [3,12] 3

A particular matching game called the Assignment game was
described by Shapley and Shubik (1872) and others and involves
two finite disjoint sets of players, S and 7. Associated with
each possible partnership (i,,/), is a real number which
represents the relative value of that coalition. The only
coalitions of any worth are those that contain players from each
set. The assignment game can be represented as a bipartite
graph, and is easily applicable to a market model. One set of
players could represent buyers, and the other sellers. The goal
is to find a maximum weight matching on the graph, which would
correspond to making the most favorable matches between buyers
and sellers.

When discussing cooperative games we are often concerned

with the allocation, or payoff that each player receives. An
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allocation x € Rn is efficient for the game (N,w) if

zgzg-w1hn

It makes sense that the sum of the allocations to each individual
is egual to the worth of the grand coalition. We would expect
any fair allocation to have this property.

Another property that would be indicative of a fair
allocation is called individual rationality. An allocation is
individually rational if the payoff to each individual i is at
least w({i}). The set of all individually rational and efficient
allocations is called the set of imputations.

The core of a game w is the set of all n-vectors x

satisfying:

;: xs2w(8) , SN,
&9

thi-mm ;

In other words, the core is the set of all group rational and
efficient allocations. An allocation ie group rational if the
sum of the payoff to any coalition (5) is greater than or equal
to w(S). The core of the above game is:
X, 3%+, =15
X, +X,215

X, tx,xa
X+, 29

Xy 0 X0 Xy 20



Note that when a = 3 the core is nonempty, but when a = 12 a
problem arises. There is no solution to the above system of
equations, and therefore the core must be empty.

The Shapley value is an allocation method developed by Lloyd
Shapley which allocates to each particular player its average
marginal contribution over all possible permutations of the

players. The Shapley value for individual i in closed form is:

IRCAUD) (s-1) L ‘” D! tw(s)-w(s-(1))]

where s dénotes | 5] - In the above example the Shapley value
produces the allocation (5,8,2) for players 1,2 and 3
respectively when a = 3. When a = 12, the allocation is
(6.5,5,3.5). The sum of the values is 15 in either case, showing
that this is an efficient allocation. The Shapley value is not
necessarily group rational, and therefore may not be an element
of the core, as it is not in this example. Computing the Shapley
value can be tedious, especially when the game involves many
players.

Given a cooperative game (N.w), let

e(x,S)=v(S) _;; %,

be the complaint that coalition S has against the allocation xi.

e(x,5) is the difference between what groupr S can obtain on its



own and what it will receive according to the allocation y  The

nucleolus is the imputation which lexicograprhically minimizes the
maximum complaints (i.e. the largest complaint is as small as
possible and is voiced by a few groups as possible, the next
largest complaint is as small as possible and is voiced by as few
groups as possible, etc.). The nucleolus is group rational,
therefore it is always an element of the core if the core is
nonempty. The nucleolus for the example is (4.5,10.5,0) for
rlayers 1,2 and 3 respectively when a = 3. When a = 12, the
nucleolus is (8,5,2). Note that this allocation is not an
element of the core and therefore, as we noted before, the core
must be empty. A linear programming method can be used to find
the nucleolus.

A theorem by E. Kohlberg characterizes the nucleolus in a
distinctive way. For a given allocation x € X (where X is the
set of all imputations) define a sequence of collections
B1,B2,...,Ba, such that Bi1 is the collection of coalitions with
the greatest complaint (maximum e(x.S5)). Bz would be the
collection of coalitions with the next largest complaint, and so
on such that every 5 « N belongs to one of the PBwx. Define also
for k= 1.,8...-39:

k
Ct'U ﬂj

=1

A paraphrase of Kohlberg s theorem:

Theorem: A necessary and sufficient condition for x € X to



be the nucleolus of the superadditive game (N,w)

is that, for every k£ = 1,2,...9, the collections

{x determined by x are balanced.

A set of coalitions is palanced if there exists coefficients

Ae satisfying

§ Ag=1,ieN

1,0, S€l,

For example, given the set Bi1 = {1 = {{1},{2,3},{2,4},{3,41}}, the
values A1=1, Az2a=i24=is34=% could be assigned to each of the four

coalitions respectively to make Bi1 balanced, as is shown below.

§l=3\=l

z‘( Ag= }.23 tA,,~Ve+1h=1

268

g‘( Ag=hy, +A, =Ve+1R=1

1
3€8

§ Ag=dy thy=Yorth=1

1
4€8

The set of values that make a given collection balanced is called
the balancing vector.

Another theorem concerning balanced collections will also

prove useful:

Theorem: The union of balanced collections is balanced.



Proof: Let

C {SJ_,---,Sm},

22 A2, .0.:000
be balanced collections, with balancing vectors
(¥1,...:¥ym) and (21,...,2x) respectively. Then the
union of these two collections is
4D = {Ri,...,Ral},
where g £ m+k, since there may be some overlap in the

collections. For any ¢t, 0 < t < 1, define

tyi if Ry = 51 € C-D
w3 = (1-t)zp if Ry = T» € D-C
tyvai + (1-t)zp if Ry = 51 = Tp € (ND
then (wi,...,wse) is a balancing vector for CQUD.

Therefore the union of two balanced collections is

balanced, and by induction the union of any number of

balanced collections is balanced.

It is easier to grasp the proof of this theorem using an
example. Consider the two balanced sets below:
€= {{1,2,8},{2,3},{1}}
= £11.2},12.3},1{1,3}}
the balancing vectors for each set are (%,%,%) and (%,%,%),
respectively. The union of the two sets is:
GD = {{1,2,3},{2,3},{1},{1,2},{1,3}}

Using the formula from the proof, we now construct a balancing
vector for this new set. The vector turns out to be (¥%t,¥%, (%-

¥t), (%%t),%t). Summing over each player, we find that each sum
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iz 1, and thersfore the set is balanced.

Now we will try and use this information in finding the
nucleolus and Shapley value for matching games on specific
classes of graphs.

Stars. A graph G is pipartite if it is possible to
partition its vertex set V(G) into 2 subsets Vi, Vz such that
every element of the edge set E(G) joins a vertex of Vi to a
vertex of V=. (i.e. there are no edges between vertices in the
same subset). A star is a very simple bipartite graph in which
the size of one subset is 1 (|V2| = 1). The maximum weight
matching in any star is equal to the maximum weight edge.

EXAMPLE: w({1,2,3,4,5})=w({1,2})=10
nucleolus = (9,1,0,0,0) 2 3 4 5

10 8 5 3

Given any star, the edges can be arranged so that they are in
nonincreasing order from left to right. Therefore, we can always
refer to (1,2) as the highest weight edge, and (1,3) as the next

highest, and so on.

Proposition: The nucleolus for any n-person matching game
on a star is:

[Ge(w({1,2})+w({1,3})), (%(w({1,2})-w({1,3})) ,0,0,...,0].



Proof: Azzumes that thes imputation above iz the nucleolus.

Consider the complaints for each coalition of

players:
S Complaint
{2 u0iudici. Ligtk 0
{1,2,...} any coalition 0
with 12
{1, 8,...) any coalition w({1,3}) - %(w({1,2})+w({1,3}))=

with 13 and not 2

%(w({1,3})-w({1,2}))

{1, 4,...} any coalition w({1,4}) - ¥(w({1,2})+w({1,3}))
with 14 and not 23
il, - PN etc.
£, By s v bae okl B
{ 2,...} any coalition with 0 - ¥(w({1,2})-w({1,3})) =
2 and not 1 %(w({1,3}) - w({1,2}))
{ 3,...} any coalition not 0
containing 1 or 2
{1} 0 - ¥(w({1,2}) + w({1,3}))

We can now order these complaints according to the Bk 's in

Kohlberg s theorem.

Ba = {11.2.8.4,.. .0},
Bz = {{1, 3, 6
BS = {{1’ ,- }}

fa = £{1, B,..33
Bs = {{1}}

Now if we consider {1 = Bi, {=

«rdpl Bp..del 4yl ..sind)

= B1 U Bz, etc. we will find that

these sets are balanced, and therefore the conjectured imputation

must be the nucleolus.

Other Bipartite graphs.

Now we will consider a more complex

class of bipartite graphs, K(n,n) graphs. The symbol K(n,n)
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ztands for a complete bipartite graph with equal numbers of
vertices in each subset. A pomplete bipartite graph is a
bipartite graph with vertex sets Vi and Vz with the added

property that if uw € Vi and v € V2 then uv € E(G) (where E(G) is

the edge set of G). A K(3,3) graph is pictured below:

Example: nuec. = (5,5,6,6,8,8)

Given a complete bipartite graph, the vertices can be relabeled
such that the edges in the maximum weight matching have end
vertices 1 and 2, 3 and 4, 5 and 6, etc. respectively. Using
this labeling we can now use the following formula to find the
nucleolus.

Proposition: Given a complete bipartite graph K(n,n), if the
weight of each edge in the maximum weight matching
is greater than or equal to 2x each edge not in
the maximum matching then the nucleolus is:

(w({1,2}),%w({1,2}),%w({3,4}),%w({3,4}),...,%w({m,n}),%w({m,n}))

Proof: Assume we are given K(n,n) with each edge in the maximum
weight matching greater than each edge not in the maximum weight

matching. Consider the complaints of some of the coalitions.
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The following coalitions have a complaint of 0, and therefors
would be in Bi:
{grand coalition},

{1,2},{3,4},...,{m,n} and any union of these pairs

It is not so obvious what the elements of Bz should be, it
depends on the actual weights on the edges. Assume that
=2 = {{1},{2})
which is an option since Bi w B2 is balanced. This means that
{1} and {2} have equal complaints, -x1 = -x2. Since we know that
x1 + X2 = w({1,2}) then by substitution we arrive at
x1 = x2 = %w({1,2}).
Assume then that Ba = {{3},{4}}, and B4 = {{56},{6}}, etc.
Through the same method as above we find that:
X3 = Xa = ¥w({3,4}), and x5 = xe8 = %w({5,6}), etc.
By making these assumptions we form a number of different
inequalities, because by definition these complaints must be
greater than the complaints of all of the remaining coalitions.
For example, the complaint for player 1 must be greater than the
complaint of the coalition {2,3}
-¥w({1,2}) > w({2,3}) - %w({1,2}) - %w({3,4})
or simply w({3,4}) > 2w({2,3})
Looking at a number of these equations yields the following
result:
w({1,2}),w({3,4}),...w({m,n}) > 2(any edge not in the matching)

Which shows that, when the edges in the maximum weight matching
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are greater than Sx the weights of the sdges not in the matching,
then the nucleolus allocates to each player exactly ¥ the weight
of the matching edge incident to that player.

In the example above all of the assumptions are satisfied,
and the nucleolus does in fact allocate the conjectured amount to
each player.

This proof can also be used when considering even cycles and
incomplete bipartite graphs with equal numbers of vertices in
each subset. A cycle is an alternating series of vertices and
edges, beginning and ending with the same vertex, in which no
vertex or edge is repeated (other than the beginning vertex).
Example: nuc. = (5,5,8,8,6,6)

1 10 2

12 16

5 i 4

An even cycle, like the one above, has an even number of vertices
and is just a special bipartite graph. An incomplete bipartite
graph is a K(n,n) with some edges removed. Both of these graphs
can be transformed into complete bipartite graphs by adding 0-

weight "dummy' edges, then the proposition applies.

Conclusion. These two examples prove that it can be fairly

simple to find the nucleolus of different classes of matching
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games. The result dealing with even cycles leads me to believe
that a similar result exists also for odd cycles, and that thse
rasult for odd cycles may be related to complete bipartite graphs
with vertex subsets of different sizes. I have more results on
4-cycles (cycles with 4 vertices) for cases where the split
between players is not 50/50. However, when the game involves
more than four players it is much more complicated to find the
allocations to each player.

Simple methods for finding the Shapley value have proven
much more elusive because there is no characterization of the
Shapley value like Kohlberg's characterization of the nucleolus.
In the star graph I have found some results, but they are not

easily generalized. The bipartite case is even more complex.
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