Maximal Flow Problems and Cooperative
Games
A Senior Comprehensive Project
by
Jennifer R. Johnson

Allegheny College
Meadville,Pa.

April 29, 1997

Submitted to the Department of Mathematics in partial fulfillment of the
requirements for the degree of Bachelor of Science.

Project Advisor: David Housman

I hereby recognize and pledge to fulfill my responsibilities, as defined in the
Honor Code, and to maintain the integrity of both myself and the College
community as a whole.

Pledge:

Jennifer R. Johnson

Acknowledgements

There are many people who helped me during the writing of this
document. First, I would like to express my deepest thanks to David Hous-
man, who advised me on this project. He provided me with a lot of guid-
ance and encouragement. I would also like to thank my faculty advisor, Rick
Holmgren, who has helped me a great deal through my entire undergraduate
career.

Finally, I would like to thank my wonderful parents, my sister Allie,
my best friend Jen and Melissa without whose love and support I wouldn’t

be who or where I am today. You guys are the best! Thank you.

Abstract

This project involves looking at maximal flow problems and coop-
erative games. First, a maximal flow problem involves a graph that
has flow moving along its arcs from a beginning node to an end node.
A cooperative game involves a set of players who can combine their
assets to form coalitions. Each of the coalitions has a value, the worth
of that coalition, and there are methods to determine how to distribute
this among the players. Combining these two concepts, we can arrive
at a max flow game where the arcs of the graph are players and their
worth is the maximal flow through those arcs. Then, we can look at

various methods of distribution to the players in these games.

1 Chapter One: Maximal Flow Problems

A graph is a set of junction points (nodes) with lines or branches
connecting certain pairs of points, and a network is a graph with a flow of
some type in its branches. The upper limit to the feasible amount of flow
in a branch in a specified direction is the flow capacity of the branch in that
direction. These definitions provide the background for the maximal flow
problem. The maximal flow problem involves a connected network having a
single source (a node where the flow moves away from it) and a single sink
(a node where the flow moves towards it). At all other nodes what flows in
must also flow out. The rate (or total quantity) of flow along branch (z, 7)
from node ¢ to node j can be any nonnegative quantity not exceeding the
specified flow capacity c;; , and the objective is to determine the feasible
pattern of flows through the network that maximizes the total flow from
the source to the sink. In other words, the maximal flow problem seeks to
find the largest amount that can be moved from the source to the sink when
there are limits on how much can be moved along each branch.

The following is an example of a maximal flow problem where the

node designated by s is the source and the node designated by t is the sink:

The numbers on the branches represent the remaining flow capacity
on the branch in each direction. For example, 3 units of flow may go along
the path from a to b and one unit of flow may go from b to a. The maximal
flow that can be assigned to a path from the source to the sink is the smallest
remaining flow capacity for any branch on that path. Taking the path s-a-
b-t, there are flow capacities of 2, 3, and 2 left on the branches along that
path. The maximal flow that can be assigned can only be as great as the
smallest capacity along this path, so the maximal flow that can be assigned
along this path is 2.

Hillier and Lieberman (1986) present an efficient algorithm that can
be used to solve a maximal flow problem. The basic idea behind this algo-
rithm is to keep choosing paths from the source to the sink with positive flow
capacities and assigning maximal flows to the paths until no more such paths
exist. However, there is one adjustment that the algorithm makes. Because
the paths are arbitrarily selected each time, certain better flow assignments
may be overlooked. Thus, this algorithm allows for certain assignments to
be undone, so other more optimal assignments can be made. The adjust-
ment allows the assignment of fictional flows in the opposing direction on
a branch which in reality acts to cancel out all or a portion of the earlier
assignment. Therefore, part of the algorithm entails not just decreasing the
remaining flow capacity of the branches in the direction of the path, but
also increasing the remaining flow capacity in the opposite directions along
the branches in the paths. The benefit of this will be demonstrated in the

example. The Ford-Fulkerson algorithm is as follows:

1. Find a path from source to sink with strictly positive flow capacity. (If
none exists, the net flows already assigned constitute an optimal flow

pattern.)

2. Search this path for the branch with the smallest remaining flow ca-
pacity denote this capacity as ¢*, and increase the flow in this path by

c.

3. Decrease by c* the remaining flow capacity of each branch in the path.
Increase by ¢* the remaining flow capacity in the opposite direction

for each branch in the path. Return to step 1.

Now, this algorithm can be applied to the example with an arbitrary
path selection each time.

Assign a flow of 2 to s—+a—b—t. The network is updated by indi-
cating a flow of 2 entering, decreasing by 2 the remaining flow capacities for
each branch along that path and increasing the flow capacities by 2 in the
opposite direction for each branch in the path. Then the resulting network

is

Assign a flow of 3 to s+b—a—c—t. Then the resulting network is

Figure 1: The optimal solution

There is no flow available from s— a. There is one unit of flow
available from s—b, but then there is no flow available either from b—a
or from b—t. Thus, there are no more paths with a strictly positive flow
capacity so optimality has been reached. Thus, the optimal solution to the

example is

00020
5 —>

This flow pattern can be arrived at by comparing the final iteration
with the original problem. A branch’s net flow direction is the direction in
which the remaining flow capacity was decreased, and the amount of the net
flow is the amount by which that capacity was decreased. For example, at
the beginning the branch between a and b had remaining flow capacity of
3 from a—b and of 1 from b—a. At the end, there was a remaining flow
capacity of 4 from a—b and 0 from b—a. Thus, the net flow between these
branches has a magnitude of 1 and is in the direction of b—a.

An important thing to note about this example is the way it demon-
strates the need for adjusting for better flows by allowing previous assign-
ments to be undone. If it were just a matter of arbitrarily assigning maximal
flows to paths with positive remaining flow capacities (with no allowance for
undoing assignments), then optimality would not have been reached. Follow-
ing the same iterations as before, but without increasing the remaining flow
capacities in the opposite direction would have given way to the following
solution.

Assign a flow of 2 to s—+a—b—t. Then the resulting network is

Assign a flow of 1 to s—+b—a—c—t. Then the resulting network is

Then, there are no paths with a strictly positive flow capacity left.
However, this is not the optimal solution, which is why an adjustment is
necessary to allow for undoing assignments that may not lead to optimality
because of the arbitrary way in which they were selected. Using the algo-
rithm allowed a flow of 3 to be assigned to s=»b—a—c—t instead of just the
1 allowed when not adjusting. Thus, the assignment of a flow of 2 through
a—b was undone and an additional assignment of 1 was made through b—a
which allowed for the better flow. The final solution had the effect of as-
signing a flow of 2 to s—pa—c—t, a flow of 1 to s=+b—a—c—t and a flow of
2 to s—b—t which gives the maximal flow of 5 for the problem.

Hillier and Lieberman also present an important theorem related
to the maximal flow problem called the max-flow min-cut theorem. This
theorem, again developed by Ford and Fulkerson, states that for any network
with a single source and sink, the mazimum feasible flow from source to sink

equals the minimum cut value for all the cuts in the network. A cut is any

set of oriented branches containing at least one branch from every path from
source to sink. The cut value is defined as the sum of the flow capacities of
the branches (in the specified direction) of the cut. This theorem provides
an upper bound to the amount of flow from source to sink. The maximum
value of the amount of flow is the smallest of the cut values. So, if in the
original network a cut can be found to equal the amount of flow in a current
solution, optimality has been reached. When networks are increasingly large,
this can help to prevent a search for a path with positive flow when there
are no such paths left. Or if a cut can be found in a current solution with a
value of 0 regarding the remaining flow capacities then optimality has also
been reached. This can be demonstrated with the example as well.

Looking at the original problem,

The value of this cut is (3 + 2) = 5, which was the maximum value
of the amount of flow from the source to the sink. Then, this cut is a
minimal cut. Also, looking back at the final iteration (Figure 1) in finding

the maximal flow for the example, this same cut would have a value equal to

0 for the remaining flow capacities in that direction. Either way, the upper
bound was indeed reached signalling optimality.

An example of a cut that is not minimal is:

The value of this cut is (2 + 4) = 6, which shows an upper limit to
the maximal flow through the problem, but it is not the minimal cut.

The maximal flow problem provides an interesting basis for further
exploration. We can formally define it (in a more specialized way) as fol-
lows: a mazimal flow problem consists of a finite, nonempty set V', called
vertices; a set A of ordered pairs of vertices called arcs; a source s € V; a
sink t € V — {s}; and a function ¢ : A — R ,where we call c(a) the capacity
of arc a. This definition is more specialized than the problems shown so far
because it restricts the flow to a single direction. Further, the capacity is
expressed in relation to the set of arcs rather than the vertices. Earlier, we
expressed capacity as c; j, but in this problem where flow is restricted to one
direction, it suffices to express capacity in relation to the arcs themselves.

We will use this later when we turn the maximal flow problem into a co-

operative game. In order to investigate this concept further, it is necessary
to turn our attention to cooperative games. The next chapter will provide
the background needed to relate the maximal flow problem to a cooperative

game.

2 Chapter Two: Cooperative Games

A cooperative game involves a set N = {1,2,...,n}, and a function
w from nonempty subsets of N to real numbers. A player is an element
1 € N, a coalition is a nonempty subset S of N, and the worth of the coalition
S is w(S). The worth is how much the players in S benefit by a cooperative
effort regardless of the actions of the players in N but not in S. For a game
with N = {1, 2,3}, the proper notation for the worth function is w({1, 2, 3}),
but this will be written as w(123). Our example game has w(123) = 630,
w(12) = 360, w(13) = 330, w(23) = 120, and w(1l) = w(2) = w(3) = 0.

Now one major question that cooperative game theory explores is
determining how much each player should receive as a payoff for playing the
game. An allocation or payoff vector for the game (N, w) is a vector z € R",
the set of n-tuples of real numbers, so the ith player receives a payoff of z;.
An allocation method or value is a function ¢ from games to allocations, and
a solution is a function o from games to subsets of allocations. Again, the
proper notation is ¢[(IN,w)], but this will be written simply as ¢[w]. Two
methods for determining allocatiéns are the Shapley value and the nucleolus.
We will be following Straffin(1993) in looking at both of these.

First there are some necessary definitions. An imputation of the
game (N, w) is an n-dimensional allocation vector x that satisfies two con-
ditions. The first condition is collective rationality: Y.y ;i = w(N). The
second is individual rationality: z; > w(i) for all : € N. A preimputa-
tion satisfies the first condition of collective rationality, but not necessarily

the second. Shapley sought to determine a fair allocation method, ¢, that

10

obtains preimputations which satisfy three fairness axioms.

Axiom 1. ¢ should depend only on w, and should respect any symmetries
in w. So if players ¢ and 7 have symmetric roles in w, that is, if w(S — 1) =

w(S — j) whenever S is a coalition with 7,5 € S, then ;[w] = p;[w].

Axiom 2. If w(S) = w(S — 1) for all coalitions S C N, that is, if player
i is a dummy who doesn’t add any value to the coalition, then ¢;[w] = 0.
Adding a dummy player to a game doesn’t change the value of pj[w] for

other players j in the game.

The final axiom involves the concept of adding two games together.
If there are two games (N, v) and (N, w) with the same set N of players, then
the sum game v+ w is defined as (v+ w)(S) = v(S) +w(S) for all coalitions
S. Then there are three games and the preimputations for these games are
o[v], p[w], and ¢[v + w]. This gives way to the third axiom involving the

property of additivity.
Axiom 3. ¢[v+ w] = ¢[v] + p[w].

Using these three axioms, Shapley could prove an important theo-

rem.

Theorem 1 (Shapley, 1953). There is one and only one allocation method

of assigning a preimputation to a game which satisfies Azioms 1,2, and 3.

Proof. Sketch of the proof: For a game (N,w), Shapley demonstrated how
a unique preimputation p[w] is forced by these axioms by breaking down an

arbitrary game into a sum of games all of whose players play symmetric roles

11

or are dummies. The example mentioned earlier can be used to illustrate

the method that Shapley used.

w(l) =w(2) =w(3) =0
w(12) =360 w(13) =330 w(23) =120
w(123) = 630

For any coalition § C N and for a real number a, let aw® be the game

defined as follows:

a ifTDS
aw’(T) =

0 ifT2S

So, T needs to contain all the members of S in order to get a units, else it

gets 0. For example, 360w{12}(T) = 360, if T = {1,2} or {1,2,3}. For all
S

k)

other T, 360w{12}(T") = 0. All the players in S have symmetric roles in aw

and all the players not in S are dummies. Thus, Axioms 1 and 2 give

afs ifieS
pilaw’] =

0 ifi¢sS

Here, s is the number of players in S. For example, <p,-[360'w{12}] = &% =180

if i = 1,2 else ¢;[360w{!12}] = 0. Starting with the original game w, look at

12

a new game

w' = w — 360w(1?} — 330w {13} — 12023}

For this game,
w'(1) =w'(2) =w'(3) = w'(12) = v'(13) = w'(23) = 0

w'(123) = 630 — 360 — 330 — 120 = —180

So, w' = —180w {123}, which yields
w = 360w {12} + 330w {13} + 120w {2} — 180w {123}

Axiom 3 gives p[w] = ¢[360w{12}]+4[330w {13+ o[120w 231+ o[- 180w {123}

360 330 —180
prlw] = ==+ == +0+ —— =285
360 120 -180
330 120 -180
(pg[w]=0+—2—+—§—+T=165

The three axioms forced this unique preimputation, and the method works

for any general game. O

This value, the Shapley value, can be computed in other ways as
Shapley points out. The players form coalitions adding one player at a
time. As a new player joins the coalition, that person should receive the

value that her joining adds to the coalition. What the players receive can be

13

considered as a preimputation. It must also be considered that there are n!
different ways that the coalition of all n players could form since order does
matter. If the preimputations given by all these different orderings were to
be averaged, we would find ¢.

The example can again be used to demonstrate this. All the possible
orders are listed, and the values added by each member joining the coalition

in each order are determined.

Order 1 2 3
123 0 360 270
132 0 300 330
213 360 0 270
231 510 0 120
312 330 300 0
321 510 120 0

1710 1080 990

1
plw] = 6(1710’ 1080, 990) = (285, 180, 165)

which is the same as the answer arrived at using the other method. In order

14

to arrive at the above numbers, take the order 321 as an example:

3:w(3) —w®)=0-0=0
2:w(23) —w(3)=120—-0=0

1:w(123) — w(23) = 630 — 120 = 510

So, as each player joins, the value that player receives is the value
of the coalition after she joins minus the value of the coalition before she
joins. This way to conceptualize the Shapley value is that the value player 2
receives is the average amount the player adds to the grand coalition with all
ordering formations being just as likely. So each player receives her average
contribution. Trying to complete such a table for bigger games would be
quite an enormous task, but a simpler way to calculate the values this way
is to look at individual players. When a player ¢ joins the coalition, she
along with the other players who have joined make up a coalition S of size
s. The value of ¢’s contribution is w(S) — w(S — 1), and this occurs for only
those orderings where the s — 1 other players in S joined before ¢, followed
by the n — s players in N\S. The number of orderings where this occurs is
(s = 1)!(n — s)!. So the Shapley value for player 7 can be written as follows

where s is the size of S and n is the size of N:

PiNw) = =35 = Dl =)1fu(S) = w(S ~)

' ies

For example, we can again look at ;.

15

CoalitionS (s —1)!(n—s)! w(S) —w(S —1) Product

1 1x2=2 0-0=0 0
12 1x1=1 360 — 0 = 360 360
13 1x1=1 330 — 0 =330 330
123 2x1=2 630 — 120 =510 1020

1710

p1[w] = é(1710) = 285

The Shapley value is based on a concept of fairness, but there are
other considerations that can give way to solutions as well. The nucleolus,
which David Schmeidler proposed, is an imputation that is based on the idea
of bargaining. The core is the set of all imputations ¢ = (z1,...,z,) which
satisfy) ;g i > w(S) for every S C N. The core of some games may be
empty, in which case, there is no imputation that satisfies these constraints.
However, Schmeidler sought to make the largest violation as small as pos-
sible. The ezxcess of S at z for every imputation z and coalition S C N is
defined as es(z) = w(S) — ;g =i- This measures the difference between
how much S could get if they broke from the grand coalition and what z
gives them so it could be viewed as their unhappiness with or complaint
against z.

The nucleolus is the imputation that lexicographically minimizes the

16

largest complaint. In other words, for a game (IN,w) and payoff vector
z = (z1,...,Zpn), the 2"-vector §(z) is defined as the vector composed of the
excesses of the 2" subsets S C N in decreasing order. 0r(z) = e(Sk, z) where
S1,S2,...S2+ are the subsets of N, arranged by e(Sk,z) > e(Sk+1,z). The
vectors 6(z) can be ordered lexicographically as Jianhua(1988) shows. Given
two vectors a@ = (ay,...,0q) and B = (B1,...,0,), « is lexicographically

smaller than § if there is some integer k, 1 < k < ¢q, such that

a=p0 for 1<I<Ek,

ay < P.

This relation can be written as a <p 8. We writea <y Bifa <; Bora = 3.

These relationships can be used to order the allocation vectors. Thus,

Ty

if and only if 6(z) <, 6(y) and

T<Y

if an only if 6(z) <r 6(y). The nucleolus can then be defined using these
orderings. In a game (N, w) with a set of allocation vectors X, the nucleolus

of w over the set X is the set v(X) defined by

v(X)={z € X|if y€X, then z <y}

17

The nucleolus of w over the set of imputations X! is the set v(X1) defined
by
v(XY) ={z € X|if ye X' ,then z=<y}.

The prenucleolus in the game (N, w) over the set of preimputations X9 is

the set v(X?) defined by
v(X% = {z € XOlif ye X%then z <y}

Going back to the example, we can try to minimize the maximal
coalitional complaints and determine the nucleolus. Starting with some
imputation, say = = (340, 150, 140), we find the excesses of the coalitions.
We try to lower the largest excess, the second largest excess, the third largest

excess until we get to the unique imputation that is the nucleolus.

e1(z) =0—340 = —340
es(z) =0 — 150 = -150
es3(z) =0 — 140 = —140
e12(z) = 360 — (340 + 150) = —130
e13(z) = 330 — (340 + 140) = —150
e23(z) = 120 — (150 + 140) = —170
e123(2) = 630 — (340 + 150 + 140) =0

The largest coalitional complaint is 0 but that’s always the complaint of the

grand coalition so it cannot be lowered. Now, ejo(z) = —130 is the largest

18

coalitional complaint that can be lowered by giving more to coalition 12 and
taking from coalition 3. Since ej3 > es3, it should be taken from player 3
and given to player 1. Now, eja = —130 and e3 = —140, the best that can
be done is to make these equal by taking 5 from player 3 and giving it to
player 1. Thus, we now have y = (345,150, 135), with

e1(y) =0-345 = —-345
e2(y) =0—150 = —150
e3(y) =0-135 = -135
e12(y) = 360 — (345 + 150) = -135
e13(y) = 330 — (345 + 135) = —-150
e23(y) = 120 — (150 + 135) = —165

Il
o

e123(y) = 630 — (345 + 150 + 135)

The excesses of coalitions 3 and 12 can’t be lowered simultaneously since
lowering one would raise the other. Neither can the excesses of 2 or 13 be
lowered. Since every excess has been minimized as much as possible, we are
down to the unique imputation y which is the nucleolus.

Kohlberg proves a theorem which allows for an interesting charac-

terization of both the nucleolus and the prenucleolus.

Theorem 2 (Kohlberg, 1971). Let By, Bs,... be the sets of coalitions of
highest excess at x, second highest, third highest, etc. Let Dy = By U Ba U
-+ U By. A necessary and sufficient condition for x to be the prenucleolus is

that each Dy 1s a balanced collection.

19

A collection C = {S1, S2,...,Sn} of subsets of N is called balanced if there
exist positive real numbers (called balancing weights) A, Ag,..., An such
that, for each ¢ € N,

doA=1

J

1€ S

For example, the collection {{1},{2,3}, {2,4},{2,5},{3,4,5}} is balanced
with A = (1, %, %, %, %) However, {{1,2,3},{3,4,5}} is not balanced since
A1 =1 and Ay + A2 = 1, which is impossible since each \; was required to

be a positive number.

Proposition 1 (Housman, 1989). If (N, w) is a superadditive game, then

the prenucleolus and nucleolus yield the same imputation.

So, if a game (N, w) satisfies w(S)+w(T) < w(SUT) for all disjoint coalitions
S and T, and if each D, is shown to be a balanced collection, then this leads
to both the prenucleolus and the nucleolus.

Consider the example with y. The sets of coalitions with descend-
ing excesses are By = {{1,2},{3}}, B2 = {{1,3},{2}},Bs = {{2,3}},B4 =
{{1}}. Then, D; is balanced with A = (1,1),Ds is balanced with A =
(.5,.5,.5,.5), D3 is balanced with A = (.5,.25,.5,.25,.25), and D, is balanced
with A = (.25, .5, .25, .5,.25,.5). Thus, each D, is a balanced collection which
verifies that this is indeed the nucleolus. The example with z is not balanced

because B; = {{1,2}} does not contain any set with 3 in it.

20

3 Chapter Three: Maximal Flow Problems as Co-

operative Games

Setting up the concept of a maximal flow problem and cooperative
games leads to the idea of a max flow game. Recall that a mazimal flow
problem consists of a finite, nonempty set V, called vertices; a set A of
ordered pairs of vertices called arcs; a source s € V; a sink t € V — {s}; and
a function ¢ : A — Ry ,where we call ¢(a) the capacity of arc a. Given a max
flow problem (V, A, s, t, c), we define the associated maz flow game by (A, v)
where v(S) is the max flow in the problem (V, S, s,t,¢). Thus, the arcs are
the players and the worth of a coalition is the maximal flow along the paths

defined by the players in the coalition. Here’s an example:

WO
o

7\@/5

.

This is a five player game with V' = {s,7,q,p, t} and A = {e, 8,7, 6, €}.
We denote the capacities as follows: c(a) = a, ¢(8) = b, c(y) = ¢, ¢(8) =d,
and c(e) = e. Then, the worths of the various coalitions are as follows:
v(aBe) = v(afye) = v(afBbe) = min{a,b, e}, v(ayde) = v(Byde) = v(yde) =
min{c, d, e}, v(afyde) = min{(min{a, b} + min{c,d}), e}, and v(S) = 0 for

21

all other coalitions.

3.1 General Results

We will first look at some results involving these max flow games,
and then look at the Shapley values and nucleolus values for general games

involving one to four players.

Theorem 1. Maz flow games are superadditive. That is, for a maz flow
game (A,v), it follows that v(S) +v(T) < v(SUT) for all disjoint coalitions
S and T.

Proof. If v(S) = s and v(T) = t, then the maximal flow along the paths
defined by the arcs in S and T are s and t, respectively. Now, S and T are
disjoint coalitions, so for an a € S, a ¢ T. So, the flow along the arcs in S is
distinct from the flow along the arcs in T', and thus, the maximal flow found
along the paths defined by the arcs in SUT must be at least as much as the
maximal flow through S and T individually, or v(SUT) > s + t. It may be
that the union of S and T allows more flow through by completing a path
from the source to the sink, but the maximal flow of SU T is at least as

great as the maximal flow of S and T'. That is, v(S) +»(T) < »(SUT). O

The max flow problem (V, A, s,t,c) = M is separable if there are
max flow problems (Vi, Ay, s,t,¢) = My and (V3, A9, s,t,¢) = My such that
V=WuV inV= {s,t}, A1 UAs = A, and A; N A3 = (. Here’s an

example of a max flow problem that is separable:

22

N

b

In this original problem, we have M = (V, A, s,t,c) with V = {s,r,q,t},
and A = {o,f,7,6,¢}. This is separable into M; = (V4, Ay, s,t,c) with
Vi = {s,q,t} and A; = {4,€¢} and My = (V2, Ao, s,t,¢) with Vo = {s,r,t}
and Ay = {a, 3,7} since M) and Ms satisfy the criteria. That is, V = ViUV,
VinVe={s,t}, AAUAs = A, and A1 N Az = 0.

Using this definition of separability leads to the following theorem:

Theorem 2. Suppose M is separable into M and My and (A,v), (A1,v1), (A2,v2)
are the mazr flow games associated with M, My, Ma, respectively. Then,

v(S) =v1(SN A;) +v2(SN Az) for all S C A.

Proof. Now, v(S) =v(SN A) since S C A. Since A = A; UA2, v(SNA) =
v(SN (A1 UA2)) =v((SNA;)U (SN Ay)). Then by the superadditivity of
flow games, v((S N A1) U (SN A2)) > v(SN A1)+ (SN Ag), so v(S) >
v(S N A;) +v(SN Az). Now, SN A C A and SN Ay C Az so v(S N
A1) = v1(SN A;) and v(S N Az) = v2(S N Az). Thus, we have shown that
v(S) > v1(SN A1) +va(S N Ag).

We will now show that v(S) < v1(S N A1) + v2(S N A). From the
max-flow min-cut theorem, we know that a cut of S provides an upper
bound on v(S). If we can show that a cut of SN A; plus a cut of SN Ay
is actually a cut of S, then we could show the other inequality. First, we
know that there is a cut of SN A; with a cut value of v; (SN A;) and a cut
of SN Az with a cut value of v2(S N As) by the max-flow min-cut theorem.

Now, let’s assume there is some path in S not in either of these cuts (that

23

is, these two cuts combined are not a cut of S). The path can’t be all in
A; or all in As or it would be included in the cuts of SN A4; or SN A,.
So, it must be that part of the path is in A; and part is in Ay. This means
there is some w such that w € V; — {s,t} and w € V2 — {s,t}. However,
by definition of separability, V; N Vo = {s,t}, so this is impossible. Thus, it
must be that the combined cuts of SN A; and SN A; are a cut of S. By
the max-flow min-cut theorem, v(S) is less than or equal to the value of all
cuts of S. So, v(S) < the combined cut values SN A; and S N As. That is,
v(S) < v1(SN A1) +v2(SN Ag).

We have shown both that v(S) > v1(SNA;)+v2(SNA2) and v(S) <
v1(SNA1)+v2(SNA2). Thus, it must be that v(S) = v1(SNA;1) +v2(SNAg)
and we are done.

O

Theorem 3. If a given maz flow problem (V, A, s,t,c) is separable, then

. ific A
oi(v) = pi(v1), i€ A)

pi(v2), ifi€ Ay

Proof. Since (V, A, s,t, c) is separable, there exist max flow problems (V;, A3, s, t,¢)
and (Va, Ag,s,t,c) such that V = ViU Vo, Vi NV, = {s,t}, AU Ay = A,

and A; N Az = . Now, the general formula to find the Shapley value is:

0i(v) = = 3" (s = Dl(n = 5)1o(S) — u(S —)]

' ies

24

=% (s—=1)!(n—s)![v1(SNA1)+va(SNA2) —v1 (SNA; —5) —va(SNA2—1)]
' ieS

since we have just shown v(S) = v1(SNA;)+v2(SNA2). Now, if 1 € SN A,
then this equals 2, Yic(snay) (8= DHn—8)![v1(SN A1) —v1 (SN Ay —4)] since
i€SNA =i¢ Ap=i ¢ SN Ay = va(S N Ap) = va(SN Ay — 7). This is,
of course, ¢;(v1). Similarly, we can show that if i € Ao, then ¢;(v) = p;(v2).
We have shown that (1) holds. O

I conjecture that a similar result holds true for the nucleolus.

3.2 One and Two Player Games

Now, we can look at the various one to four player games that are de-
fined by various max flow problems. First, looking at all max flow problems

with one arc:

®—0

This is the simplest max flow problem, with V = {s,t}, and A =
{a}. This would yield a max flow game where a is the only player. Then,
v(a) = c¢(a). For convenience, we shall think of ¢(a) = a. The Shapley

value is ¢ = (a) and the nucleolus is v = (a).

25

There are two max flow problems with two arcs:

a
OO0
Figure 1: The first max flow problem with two arcs

a

s

Figure 2: The second max flow problem with two arcs

Now, the max flow problem defined by Figure 1 has A = {a, 8} and
V = {s,r,t}. Again, c(a) = a, and ¢(B) = b. The max flow game is (4,v).
Then, v(a) = v(B8) = 0 and v(af) =min{a, b}. From now on, the minimum
of numbers will be indicated by a A. That is, the min{a, b} will be written

as: a A b. The Shapley value for both a and S is 9-12\—1’ so p = (“TM’, “TA" .

Similarly, the nucleolus is v = (“2&, “T"b ;

The max flow problem defined by Figure 2 has A = {«,(} and
V = {s,t}. The max flow game is (A, v), but this is separable into the single
player games with « as the sole player in one game and £ as the sole player in
another. By Theorem 2, and the one player results, it follows that ¢ = (a, b)

and v = (a,b) in this game.

26

3.3 Three Player Games

There are four basic maximal flow problems with 3 arcs.

O--=0L0-L0

Figure 3: The first max flow problem with three arcs

(p--c

Figure 4: The second max flow problem with three arcs

Figure 5: The third max flow problem with three arcs

N
OB

Figure 6: The fourth max flow problem with three arcs

The max flow problem defined by Figure 3 has A = {o, 3,7} and

V = {s,r,q,t}. The capacities again shall be denoted as follows: ¢(a) = a,

c(B8) = b, and ¢(y) = c¢. The max flow game is (4,v) with v(afy) = a A

bAcand v(S) = 0 for all S C A. Again this leaves us with ¢ = v =

(a/\b/\c aAbAc a/\b/\c)
3 3 .

5T 3

The max flow problem defined by Figure 5 has A = {a, 3,7} and

27

V = {s,t}. The max flow game is (A,v), but again it is separable into 3
single player games. Thus, ¢ = (a,b,c) and v = (a, b, ¢) in this game.

The max flow problem defined by Figure 6 has A = {a, 3,7} and
V = {s,r,t}. The max flow game is (4, v), but again it is separable into the
two-player game with o and 3 (like in Figure 1) and the single player game
with 4. Thus ¢ = (“TM’, %b,c) and v = ("T’\b, “T/\b,c) in this game.

The max flow problem defined by Figure 4 allows for more interest-
ing coalitional formations. Now, A = {a, 3,7} and V = {s,r,t}, and the
capacities shall be denoted the same as before. This max flow game of (A4, v)
allows for coalitional formations for which we can look at four different cases
in considering both the Shapley value and the nucleolus. The worths of the
coalitions are as follows: v(ay) =aAc, v(By) =bAc, v(aBy) = (a+b)Ac,
and v(S) = 0 for all other coalitions. Using the general formula of finding

the Shapley value, we arrive at the following Shapley values for each arc:

Pa =%(a/\c)+%{(a+b)/\c— (bA)]

- =%(b/\c)+%[(a+b)/\c—-(a/\c)]

- =%(a/\c)+ %(b/\c)+ %[(a+b) Ad

Using these, we can look at the four possible cases. We can arbitrar-

ily assume that b > a without loss of generality.

28

Casel: c>a+bd

1 1
P = E(a/\c)+§[(a+b)/\c-—(b/\c)]

=éa+§m+m-m

1
= —a

2

pg= l(b/\c) + %[(a+b) /\c.— (aAc)]

6

1 1

= =} P b) —

5 +3[(a+) — aj
1

%=%mAd+%qu+gm+mAq

1 1 1 1
=—a+6b+—a+—b

6 3 3
1 1
—§a+§b

Case2: a+b>c>b>a

= 1c+l¢1—lb
Pa=36T6%" 3
-—lc+lb la
PE=3°T56" "3
lc+la+lb
Pr=3°T8°T 6

29

Case3: b>c>a

€

°
]
S

S

(9]
+

O = | =
]

33

Il Il
D= DN = O =

(o]

|

Cased: b>a>c

€

R
Il
o

o

S S
2 =
| I

LD O3] = O] =
(o]

The nucleolus can be looked at with these four cases as well. How-
ever, finding a generalized version of the nucleolus is a bit more compli-
cated, but still possible. The nucleolus will be v = (zq,,2,). Further,

Tq + zg + T4 = (a + b) A c since this is v(aBy). The coalitional complaints

are as follows:

30

eag(V) = =20 — 8
eay(V) = (@A) — o — x4

egy(v) =(bAc) —zg— =,

ea(V) = -4
eg(v) = —z3
ey(v) = —z4

This being the nucleolus, the maximum coalitional complaints should
be minimized, and we can work from the idea that certain complaints will
be equal. Working in this manner, we can arrive at a possible nucleolus and
then check to ensure that we have indeed found it. We begin by setting
egy(v) = eq(v). That is, (bAc) — g — £y = —2z4. Solving our equation
involving the sum of the allocations, xo+ 23+ 2z, = (a+b) Ac, for —z3 -z,
gives us —zg — Ty = To — (a + b) A ¢, which can be substituted into our
complaint equation. Thus, (bA ¢) + z4 — (@ + b) A ¢ = —z,. Solving for
Ty, We get To = L"—‘Iﬂ%j&l. Similarly, by setting eq, = eg(v), and using
a similar process, we get zg3 = _(g_-l;lg)/_;—(a_Acl_ We can get z, by solving
zy = (a+b) Ac— o — zg. This yields z, = M. In each of the four

cases, this can be shown to be the nucleolus.

31

Casel: c>2a+d

_ (a+bd)Ac—(bAc)

Ta 5
_(a+b)—b
- 2
=2
2
(a+b)Ac—(aAc)
Ta =
2
_(a+b)—a
- 2
_b
T2
(bAc)+(aAc)
Ty =
2
_b+a
-9

We can show that this is indeed the nucleolus for this case by using

Kohlberg’s Theorem. First, finding the coalitional complaints in this case

32

with the proposed nucleolus:

eap(v) = —a2— <

ar(¥) =

egy(v) = :23
ea(v) = 223
eg(v) = _Tb
eyl = 222

Recalling that b > a, we have eq(v) = eg,(v) > eg(v) = eaqy(v) >
ey(v) = eqp(v). Using Kohlberg’s Theorem, we have By = {{a}, {3,7}},
By = {{B},{a,7}}, and B3 = {{v},{a,B}}, since those are the sets of
coalitions of highest excess, second highest excess, and third highest. Now, if
we can show that each D, = BjUB,U- - -UB; is a balanced collection, then this
is the prenucleolus. Further, since this is a superadditive game, Housman'’s
Proposition proves that the prenucleolus is the same as the nucleolus. Now,
D is balanced with A = (1,1), and D is balanced with A = (3,1, 1,1), and
Dj3 is balanced with A = (%, %, %, %, %, %) Thus, this is indeed the nucleolus
for this case. It works out that a similar argument can be made in each of

the other cases to show that it is the nucleolus in each of those cases.

33

Case 2: (a+b)>c>b>a

c—b
To = 5
c—a
zg = 5
a+b
Ty = 5
Case3: b>c>a
Ta =0
c—a
zg = 5
ct+a
Ty = 5
Cased: b>a>c
Te =0
ﬂ:ﬂ=0
ZTy=cC

We can show that the general nucleolus we arrived at is indeed the nucleolus
for all cases (similar to how we showed that it is the nucleolus in the first

case). First here are two lemmas that will help in our proof.

34

Lemma 1. With our proposed nucleolus, v = ((“+b)’\;_(b’\°) , (“+b)A§—(“A°) , “’Ac);(“/\c)j

it can be shown that —z, > —xg.

Proof. Now, —z4 = l(—q-t—b%c—ﬂm and —zg = w. To show that
—Zq > —z, we must show —(a+b)Ac+(bAc) > —(a+b)Ac+(aAc). That
is we want b A ¢ > a A c. Looking at each case (and recalling that b > a) we
get:

Case 1: c>a+bThen,bAc=band aAc=a. Since,b>a,bAc>aAc.
Case 2: (a+b)>c>b>a Again,bAc=band aAc = a. Since, b > a,
bAc>aAec.

Case 3: b > ¢ > a Then, bA ¢ = ¢ and a A ¢ = a. By the case assumption
that c>a,bAc>aAc.

Case 4: b> a > ¢ Then, bAc = c and a Ac = c. Since these are equal, then
again we can say bAc > aAc.

Thus, in each of the four cases, we have shown that b A ¢ > a A ¢ which was

sufficient to show that —z, > —z3. O

Lemma 2. With our proposed nucleolus, v = ((a+b)/\;_(bl\c) o) Ag_(“/‘c) , (Mc);(a’\c)

it can be shown that —z, < —z4 — 4.

Proof. Now, —z, = —gb/\c22—ga/\c) and —Zo—T = -—(a+b)/;c+(b/\c) +—La+b)/;c+(a/\c).

To show that —z, < —z, — 23, we must show —(bAc¢) - (aAc) <
—(a+b)Ac+(bAc)—(a+b) Ac+ (aAc). Simplifying a bit, we find that we
need to show (a +b) Ac <bAc+aAcin order to prove —z, < —z4 — z3.
Looking at each case (and recalling that b > a) we get:

Case 1: ¢ > a+b Then, (a+b)Ac=(a+b) and bAc+aAc=b+a. Since

these are equal, we can definitely say (e +b) Ac < bAc+aAc.

35

Case 2: (a+b)>c>b>a Then, (a+bAc=candbAc+aAc=b+a.
Since in this case, we assumed (a +b) > ¢, we have (a+b)Ac < bAc+aAc.
Case 3: b >c > a Then, (a+b Ac=cand bAc+aAc = c+ a. Since
c<c+a, wecan again say (a+b)Ac<bAc+aAc.

Case 4: b>a > c Then, (a+b)Ac=cand bAc+aAc=2c. Since c < 2c,
we have (a+b)Ac<bAc+aAc.

Thus, in each of the four cases, we have shown that (a+b)Ac < bAc+aAc

which was sufficient to show that —z, < —z4 — 3. O
Now we can use these lemmas to prove that the proposed nucleolus
is the actual nucleolus in all four cases.

Theorem 4. The proposed nucleolus v = ((“+b)/\;"(b/\c) \ (“+b)Ag—(“A°) ’ (b’\c)"z'(“"c))

1s the actual nucleolus for the maz flow game from the maz flow problem in

Figure 4.

Proof. Using the proposed nucleolus, the excesses of the coalitions in this

max flow game were defined as follows:

36

eas(V) = —2q — 23
eay(V) = (aAc) = zo — 4

egy(v) = (bAc) —z5—z,

ea(v) = —z4
eg(v) = —z3
ey (V) = —zy

Our proposed nucleolus (& +b)A;—(bAc), (“+b)/\§_(a/\0) , (bAc)';(aAc)) was set up
so that eq(v) = egy (V) = —z, and eg(v) = eqy(v) = —z3. From Lemma 1,
we know that —z4 > —xg, 50 €a(V) = egy(v) > eg(v) = eay (V).

Further, eqg(v) = —zo — x3. Now, eq(v) = eg,(v) > eqp(v) since —zq

v

—Tqo — . Also, eg(V) = eaqy (V) 2 eqp(v) since —z3 > —z4 — 5.

From Lemma 2, we know that —z, < —z, — x4, so consequently e, (v)

IA

eag(v).

Thus, we have set up orders of excesses and we can look at the
collections involved to determine if they are balanced. Using Kohlberg’s
Theorem, we have By = {{a},{8,7}}, B2 = {{8},{e,7}}, B3 = {{,8}},
and By = {{7}} since those are the sets of coalitions of highest excess,
second highest excess, third highest and fourth highest. Now, if we can
show that each Dy = Bj U B2 U ---U B, is a balanced collection, then v is

the prenucleolus. Further, since this is a superadditive game, Housman'’s

37

Proposition proves that the prenucleolus is the same as the nucleolus. Now,
D; is balanced by A = (1,1), D3 is balanced by A = (%,%,%,%—), Ds is
balanced by A = (},4, 1,3, 1), and Dy is balanced by A = (},4,3, 1,1, 3).

Thus, we have shown that our proposed nucleolus, v, is the actual

nucleolus for all cases of the defined game. O

3.4 Four Player Games

There are several games with four arcs, but many of these are sep-
arable and thus the Shapley value and the nucleolus for those games are
easily obtained from our previous work and Theorem 2. Thus, we will only
be looking at the five basic four-player games which are not separable into

smaller games. They are as follows:

O5-=0LeLe-L0

Figure 7: The first max flow problem with four arcs

Y o~ 6
— (q) —>
prots

Figure 8: The second max flow problem with four arcs

o

Figure 9: The third max flow problem with four arcs

38

@, ® (V)

Figure 10: The fourth max flow problem with four arcs

B’ vy
a X 5
— @O—0
Figure 11: The fifth max flow problem with four arcs
The max flow problem defined by Figure 7 has A = {a,f,7, d}
and V = {s,r,q,p,t}. The capacities again shall be denoted as follows:
c(a) = a, c(B) = b, c(v) = ¢, and ¢(6) = d. The max flow game is (4,v)
with v(afBvy0) =aAbAcAdand v(S) =0 for all S C A. Again this leaves

us with ¢

=y = (a/\b/\c/\d aAbAcAd aAbAcAd a/\b/\c/\d)
- = 4 ’ 4 ’ 4 ’ 4 .

The other four player games get much more complicated in terms of
looking at all the possible cases. We will just look at the general Shapley
values for each of the four player coalitions.

The max flow problem defined by Figure 8 has A = {«, 3,7, 6} and
V = {s,r,q,t}. The capacities again shall be denoted as follows: c(a) = a,
c(B) = b, c(y) = ¢, and ¢(8) = d. The max flow game is (A,v) with the
worth of the coalitions as follows: v(ayd) =aAcAd, v(Byd) =bAcAd,
v(afyd) = (a+b) AcAd, and v(S) = 0 for all other coalitions. The general

39

form for finding the Shapley value for each of the arcs is:

Pa = %(a/\c/\d)+%((a+b)/\c/\d—bAc/\d)
pp = %(b/\c/\d)+%((a+b)/\c/\d—aAc/\d)
1 1 1
Py = E(a/\c/\d)+E(bAc/\d)+Z((a+b)/\cAd)

1 1 1
Ps = ﬁ(a/\c/\d)+ﬁ(b/\c/\d)+z((a+b)/\c/\d)

The max flow problem defined by Figure 9 has A = {a, 3,7, 6} and
V = {s,r,t} with the capacities again designated c(a) = a, ¢(8) = b, c(y) =
¢, and ¢(8) = d. The worth of the coalitions is as follows: v(ad) = a A d,
v(B6) = bAd, v(vd) = cAd, v(afBd) = (a +b) Ad, v(ayd) = (a +c) Ad,
v(Bv8) = (b+c) Ad, and v(afyd) = (a+ b+ c) Ad, with v(S) = 0 for all
other coalitions. The general form for finding the Shapley value for each of

the arcs is:

40

Ou = 11—2(a/\d)+%((a+b)/\d—(b/\d))+1—12-((a+c)/\d—(c/\d))

+%((a+b+c)/\d—((b+c)/\d))

05 = 11—2(b/\d)+11—2((a+b)/\d—(a/\d))+%((b+c)/\d—(cAd))
+%((a+b+c)/\d—((a+c)/\d))

= 1—12—(c/\d)+T1§((a+c)Ad—(a/\d))+%((b+c)/\d—(b/\d))
+%((a+b+c)/\d—((a+b)/\d))

g = 1—12(aAd)+ll—z(b/\d)+Il-2-(c/\d)+Il§((a+b)/\d)

1 1 1
+ @+ Ad)+ S (b+e)Ad)+ J((a+b+0) Ad)

The max flow problem defined by Figure 10 has A = {«a,f,7,d}
and V = {s,r,t} with the capacities again designated c(a) = a, ¢(8) = b,
¢(y) = ¢, and ¢(8) = d. The worth of the coalitions is as follows: v(ay) =
alAc,v(ad) =aAd,v(Bd) =bAd, v(By) =bAc, viaBy) = (a+b) Ac,
v(afBd) = (a+b) Ad, v(ayd) = a A (c+d), v(By8) = bA (c+d), and
v(aBvy6) = (a + b) A (¢ + d), with v(S) = 0 for all other coalitions. The

general form for finding the Shapley value for each of the arcs is:

41

Pa= 750N+ 5 (@Ad)+ (@ +b) Ac—(BAS) + ((a+b) Ad— (bAd)
+ @A e+ D)+ (@ + D) Alet+d) = (BA e+d)

05 = 25(bAE)+ BN + (@ +D) Ac—(@Ad) + =((a+b) Ad— (@A d)
+OA(c+d)+ (@ +B) Ale+d) =~ @A (c+d))

oy = 5@AS)+ (A + (6 +H) Ac)+ (A (c+d) — (aAd))
+-1-1§(b/\(c+d)—(b/\d))+%((a+b)A(c+d)—((a+b)/\d))

05 = .11_2(a/\d)+%(b/\d)+11—2((a+b)/\d)+1—12'(a/\(0+d)“(a/\c))

+1—12-(b/\(c+d)—(b/\c))+:i—((a+b)/\(c+d)—((a+b)/\c))

The max flow problem defined by Figure 11 has A = {a, 3,7, 6} and
V = {s,r,q,t} with the capacities again designated c(a) = a, c¢(8) = b,
c(7) = ¢, and ¢(6) = d. The worth of the coalitions is as follows: v(ad) =
v(aBé) = v(ayd) = (aAd), v(BY8) = bAcAd, v(aBvyd) = (a+(bAc)) Ad, and

v(S) = 0 for all other coalitions. The general form for finding the Shapley

42

value for each of the arcs is:

B = %(a/\d)+i((a+(b/\c))/\d—-(b/\c/\d))
_ %(b/\cl\d)+%((a+(b/\c))/\d-—-(a/\d))
Py = %(b/\cl\d)+%((a+(b/\c))/\d—(a/\d))

- i(aAd)+%(b/\c/\d)+i—((a+(bAc))/\d)

43

References

(1] Hillier, Frederick and Gerald Lieberman, Introduction to Operations
Research, Fourth Ed., Holden-Days Inc,1986.

[2] Housman, David, The Nucleolus and Balanced Collections, June, 1989.
[3] Jianhua, Wang, The Theory of Games, Oxford University Press, 1988.

[4] Kohlberg, Elon, On the Nucleolus of a Characteristic Function Game,
SIAM J. Appl. Math, January, 1971: pp. 62-67.

[5] Shapley, L.S., Contributions to the Theory of Games, Annals of Math-
ematical Studies: pp. 307-17.

[6] Straffin, Philip D., Game Theory and Strategy, The Mathematical As-
sociation of America, 1993.

44

