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Normally, a cooperative game is defined as a pair‘(N,v)
where N = (1,2,...,n} and v is a real valued function on the
subsets of N. But, this definition assumeg that we know a large
amount of information about the game. The problem I'm dealing
with is how can you find an allocation if you don't know the
_;alue af v og»all of the 2™ subset of N.

To deal with this, I have defined partially defined
game(PDG) as a triple (N,Z,v) where 7Z is a collection of subsgts
of the set of players N and v is a real valued function on Z.
Also, we add the restriction that Z must contain both the grand
coalition N and each individual player in N. In this paper we
will only be dealing with O-monotonic pértially defined games,
which says that if v is the O normalization of vyour- PDG then
v({i}) = O for all ieN and v(S) - 2 v(T) for all S,T € Z with Tgs.
We will also be working with a class of PDGS referred to as
‘symmetric meéning that we have a subset of indices JCEN and Z = ¢
SN S ie dl 3. In other works the structdre of Z is
unchanging under permutations of the set of players.

Under a normal .Cooperative game the Shapley value can be

wathach |
characterized as the unique allocationb that satisfies the
efficiency, additivity, symmetry and dummy properties, ar by
Chun’s characterization the unique value 6; which efficiency,
triviality, coalitional strategic equivalence and fair ranking
hold. Unfortunately, the definitions of these axioms don’' t work

entirely in their present form, so I have modified the

definitions as follows:



An allocation p 1s called efficient if for the PDG
(Z,v) £ ) Pa(v) = v(N).

An allocation P is called additive if for all PDG u, v,
and w on the same set of subsets 7 such that w(S) =
u(S) + v(S) for all S ¢ Z then Plw) = P(u) + piv).

An allocation f is called symmetric on PDG if for all
permutations mw of N and all individuals i € N, 1t
follows that Preca>(Z,mv) = pfl,v) where nv is the worth
function defined by nv(mS) ="v(S) for all S € Z.

An-allocation P satisfies the dummy player property if ] N
for all PDG (N,Z,v) and all dummy players i € N then < debive @ ~monc
= 0. Where player i is dummy if for alf}honotonic coven
covers v’ of v, player i is dummy in v'. dokne tria

An allocation Q satisfies triviality if ﬁ(vo) = O,
where vo(S) = 0 for all S € Z.

An allocation p satisfies coalitional strategic

equivalence if for all T C N such that T # ¢, and for

all a € %, if v = w + w..+, then Pe(v) = Pe(w) for all

i € N\T. Where wua.+(S) = a if 6L T and = 0 otherwise.
SeZ ad TS

An allocation P satisfies fair ranking in a PDG if for

all T C N, if v(S) = w(S) for all S e Z with -S # T,

then piv) > Ps(v) implies p;{w) > p,(w) for all i,j ¢

T » ,

An allocation ¢ satisfies marginality if for all ieN,@.}&uesmw
if Aev = Acw, then P.(v) = Pe(w). Where A:v = v(S)- whtn S 501 5L
v(S\i) if ieS, and P.v = v(SUi)-v(S) if igs. R :MZ'?

An allocation P is individually rational Pelv) 2 v({i}).

An allocation Q is individually reasonable Ps(v) £ max(
v(S) - v(S—{1i}) | ieSeZ3.

&

The problem now is to determine is” an extension of the
Shapley value gxists, or if it only exists in certain cases.
Using these definitions, I have found a wunique value on O-
monotonic symmetric partially defined games that holds under
efficiency, additivity, symmetry and dummy on partially defined

games, defined as follows:
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This particular value also satisfies the other axioms listed

above.

me el
Theorem 1: P is the unique allocationAon O-monotonic PDG's that
satisfies efficiency, additivity, symmetry and dummy .
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Proof: We will start with a value which is only additive and
develop it intao the value we want.

et

Since p i1s additive, we can write it in the form:

¥ <3 P(v) = L ca(S)v(S)
g X SeZ
‘% § Using symmetry and efficiency, we can show that
&-& where c«(S) = C|s| 7/ |S]| if i € S

% = =Cls| 7 (n - |S]|) if i ¢ S
‘§ é Also, by efficiency C. = 1. Finally we must calculate the set of
*,§§ constants C: using dummy. We will consider the following class
< 3 of O-monotonic simple PDGs vgi.. Where viu(S) =1 if |S| > k or
gﬁg ISl =k and i ¢ 'S, ‘and v..(S) = 0 otherwise. In each of these
_b §~ Zgames player i is a dummy p}ayer:so p;(v)_= 0. ?

Patv) = T CaveulS) = 3  Cov.c(S)

‘g ieSez s i¢sez n-s
'3 §ﬁ = | Ls o=t} — ¥ € fn-1} =5, "{n-1) +'1
e jea 3 it aet e s bl Gl v}l
e n>3j>k n>j>k
5]

e = - Cufn-1)!' + 1 =0
2 § (n—k)'k! n

~ _
‘gci { Thus C.. = (n-k)'k!. So, C:(S) = (n-s)'(s—1)' if ieS and

Q n' n!
C:(S) = (n—s*l1)'s! otherwise. Putting th@stconstants into the

n'
formula gives us the equation that we desired and thus this value
1s unique, ﬁow we need to show that these properties hold on O——

monotonic symmetric PDGs. Additivity, efficiency and symmetry
follow by inspection. To show dummy we must go through several
stages. w,i) mastnadize ol

First, we will show that the extreme points of, monotonic
PDGs with player i dummy are exactly the simple monotonic PDGs
with player i dummy. The simple monotonic PDGs with player 1
dummy are obviously extreme points. Then all we need to show is
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that all non-simple PDGs with 'blayer i dummy ace ot extreme

points. Pick any non-simple PDG v. Pick ann v not

equal to zero. Define a " pair of games v+ and v= OY adding or_ Yol
subtracting = respectively from the coalitions. with this'
particular value. Player i is dummy in both v+ got v—, o v is a ¥ dovicw.
convex caombination OF two other games 1in this class and thus is
not an extreme point. S

All we need to show is that if v is a monotbnic simple PDG'ﬂWL75W¢
with player i dummy then pi(v) = 0. The game v can be of one of / i
two forms: first the set of v:;’s used above, and the unanimity ¢/
games on all coalitions that have there supersets contained in Z. UN”c*ﬂ“
The first type obviously have the dummy property, and the second pmeJJS
set also has the dummy property since dummy holds on them 1in W}obwmﬂ
fully defined games.

Putting these pieces together using additivity we know that w5«£7W$
dummy holds for all symmetric monotonic PDGs. Thus this value is iSw*“bf
the wunique value on this class of games thdﬁis efficient,
additive, symmetric and have the dummy property. 5]

Lemma: Fair ranking, coalitional strategic equivalence and
triviality hold on PDGs for p-

Proof: First, we’ll show €ait+ triviality. Let ve be the trivial
game. (i.e. vo(S) =0 Vsez.) P:(vo) = Eg€z €c1(S)ve(S) = O.
Next, to show fair ranking. Pick an TCN, and a PDG v. Pick any
PDG w with w(S) = v(S) for all SeZ with T#5. Assume Pz (V) >
Ps(v) with i,jeT. Ps(v) = Zg€z C2(S)V(S) = c(TIV(T) + Zr#s€z
Ce(SIW(S) = Pa(w) + Ca(TIIV(T)I—W(T)] = P2(w) + Cl+|I[V(T)-w(T)].
Similarly, Ps(v) = Ps(w) + Cl+|[V(T)-w(T)]. Since P(v) > Ps(v),
Pelw)  + Clr]EV(TI=W(T)] > Ps(w) + C{ | [V(T)-w(T)1. Thus P (w) >
Ps(w) and P shows fair ranking.

Finally, to show coalitional strategic equivalence. Pick any O- ) NG'
monotonic, symmetric PDG v and any TCN and aef. Define the PDG WRo g

u, where u(S) = a if SIT and O otherwise. The game u is O- 4}
monotonic so we can define the game w = u + v and calculate its
Shapley value. For coalitional étrategic equivalence to hold < o
pi(v) = pi(w) for all ig¢S. - By additivity, p;(w) = pi(v) + ﬂ;(u). W
So, all we need to show is that P:(u) = O for all igT. But tr Y,
player i®is a dummy player in the game u so P:(u) = O. -
WM
This value seems to have all of the same properties as the ;35
Shapley ~value in normal games, and thus appears to be a logical
=

extension to PDGs. The next step is to fiqure out if Chun’'s

-
-

A

s
characterization also apply to this value, we know by the lemma

that the value has the necessary properties, but we need still

o> 1o

need to show uniqueness. An interesting fact about this value is

s

(W= 02w
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You might wonder why I have restricted the class of games to

possess O—monotonicty instead of monotonicty. If we don’t have

O-monotonicty we begin to have problems with existence of our

R
etk
i:§‘£:§ that if you can find a monotonic cover for your PDG in which the
.J,_f Lo e : ; Thic naedh
é:;i 32‘ remaining values that you fill in only depend on the cardinality &M-ﬂ"’"’*
Eg\g ;; of the set that you are working with, then the Shapley v'alue on .
é{é? this cover is equal to the value on the PDG. In th.'e future 1
:;%;E:% hope to figure out if this value can be generalized to deal with
§ ?—“’;“5’ PDGs that have less restrictions to the structure of 27z, the
~N
é;gﬂf'ﬁ collection -of subsets of N. It seems 1logical that if every
‘9,3%? player 1is represent an equal amount 1in the subsets of equal
égéi cardinality, then the formula for this value can easily be
ég_;;,—é generalized to deal with this case. @Another possible structuraes-
f:; Z that an algorithm might be found to calculate this value, is
when the PDG has a subgame for which we have complete
information. Both of these ideas are possible directions to
explore +to extend this valug to deal with PDGs with less
structure. < e
But, we knowrthat wé cannot generalize this formula to deal
with all games, because we lase uniqueness. Consider the class
of O-monotonic PDGs with Z = {(1},(2),(3),(4),(12},(12343}. This
game has a two parameter family of values that satisfies outr
: %r‘zagmmlfadfru
properties. Using additivity, efficiency, and symmetry we get .
= P= = a v(N) + b v({12}) and P= = Pa = c V(N) + d v({12}) where
2a + 2c = 1 and b + g = O. But, there are no games on this class
that have any dummy players, so this formula camnot be :
generalized any further. nkni



value. Caonsider that class of monotonic symmetric PDGs on the

set J = {(1,2,n}. By additivity, symmetry and-efficiency P = 1/nV(A)

+ (P-1)a V(1) — a Za#a V(i) + %(n-1)(n-2)b Yi#: wv(1i) — (n-1)b
Yo giks i1 Using the simple monotonic games that have plaver

1 dummy we find a and b. But if you considef the game where all

Qlayers except player 1 are dummy ~and combine it with the prior
results you find that n must be equal to 2. But this is supposed
to work for all n, so we have found an example where we have a
non—-existent value.

Even though at this point we might not be able to generalize
the structure of our game, we can still estimate what we think a
value should be. In general, we take our PDG and add or delete
values until it is symmetric. So if Z has a symmetric structure
with the addition of a small number of coalitioné then a possible
strategy is to consider Ehe syﬁ&egri; game with these coaltions
exéluded. Thus, even i% we wouldn’t be able tb find a unique
value with a more complex formula, we at least have a reasonable
estimate. In the same way we couldbadd coalitions with estimated
values until it is symmetric and then find the value for this
game.

There are other ways to consider a value on PDGs that is
similar to the Shgp}ey value in normal games. Consider the set
of all possible Superadditivg games that agree -with a particular
superadditive PDG on all of Z. The set of Shapley values for
these games give a convex set of values. It would seem sensible

to use the geometric center of this convex set as a value for the

PDG. In games up to four players this geometric center is

hhb{éAM
i w2



exactly the value calculated by the farmula I presented earlier.
So it seems that this value has even more intuitive sense to it
that just the axioms alone. I still don‘t know if these two

values,overlap for all games, which I hope to figuﬁe out at some

future time.

to PDGs, one can assume that a similar extension should extend
the nucleolus and other values. With any luck, one of these new
values might have be easier to calculate for PDGs that have very
little natural structure. For example, in finding the nucleolus
we might not find a unique value but we could- very easily
calculate a region of values that have the same Properties as the

nucl)eolus has under normal situations.

This area still has many directions in which we can head.

One of deals with what classesg of PDGs has a value with

these Properties, and whether it jis unique. Another deals with
finding addtional axioms which will uniqueness " and
modifications on current axioms to get uniqueness. In the

future, similar techniques to what I did with the Shapley value

can be used to find extensions for other standard values.
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Madison, New Jersey 07940-4037
(201) 408-3161

August 20, 1990
David Letscher i
2710 Fieldside Ct.
Brookfield, WI 53005

Dear Dave,

I hope that you have been able to relax after eight weeks of mathematics (with two jobs, I
don’t know how you could). I have had administrative work for the Council on Undergraduate
Research, lectures for the New Jersey Governor’s School, and software library development for
Introductory Statistics. Jeanne and I took a few hours off for our anniversary, but now I’m back

finishing up REU stuff.

I have enclosed (1) a request for an evaluation of the program, (2) the original of your REU
report upon which I have written a numbgr of suggestions, and (3) a copy of participants’ whereabouts.
Please return your evaluation to me by Seﬁtember 17. If you would like a revised copy of your report
to be sent to the NSF and other interested fersons, please return your revision by September 17. I
have held off sending out copies of student reports pending each student’s decision whether or not to
revise. There is no requirement to revise your report; it is up to you based upon your time and
interest. In late September, I will send you copies of the other reports. If there are any articles I

discuss below which you do not have, I can also send you copies. Just let me know.

You have broken ground into an important, new area of research. You have generated a
number of original and highly creative ideas; however, the details are tricky. With the benefit of more
time and a relaxed atmosphere, I have discovered two serious errors in your proof of Theorem 1.
Everything centers around the dummy axiom and zero monotonicity. The key error in the uniqueness
proof is that v, is not zero monotonic bec_ause the worth of the grand coalition in the zero normalized

formis 2 — n which is less than 0. This error can be corrected as the following lemmas show.

Lemma 1. Player i is a dummy in the partially defined game v;, with respect to monotonic

extensions if 1 < k < n, with respect to zero-monotonic extensions if 1 < k < n, and with respect

G d) = 1 iF IsIvhe o
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to superadditive extensions if n/2 < k < n.

Proof. Suppose ¥ is a monotonic extension of v;;- Since the worth of singletons is at least
0 and v(N) =1, it follows that 0 < ¥(S) < 1 for all coalitions S. If |S| < k, then there exists
T € Z satisfying SCT, i€ T, and |T| = k; this implies that ¥(S) < v(T) = 0, and so v(S)
= 0. If |S| >k, then there exists R € Z satisfying RCS, i ¢ R, and |R| = k; this implies
_ that ¥(S) > v(R) =1, andso ¥(S) = 1. Hence, there is only one monotonic extension of Viks
and i isclearly a dummy in ¥. Because v;; is zero normalized when 1 < k < n, zero-monotonic
and monotonic extensions are the same. Because the set of superadditive extensions for a partially
defined game is always a subset of the zero-monotonic extensions, the superadditive and zero-
monotonic extensions for v;, are the same when n/2 < k < n. Note that v, is not zero-

monotonic, and v;; is not superadditive for k < n/2.

Lemma 2. Suppose i is a player. Player j # i is a dummy in the unanimity on {i}

partially defined game with respect to zero-monotonic or superadditive extensions.

Proof. The zero normalization of the unanimity on {i} partially defined game has all zero
worths. So, the unique zero-monotonic or superadditive extension is the unanimity on {i} game, and

clearly j # i is a dummy in this extension.

Lemma 3. Suppose T is a nonsingleton coalition. Player j ¢ T is a dummy in the
unanimity on T partially defined game with respect to superadditive extensions if and only if all

supersets of T are contained in Z.

Proof. Suppose : v is the unanimity on .T partially defined game, ¥ is a superadditive
extension. Since the worth of singletons is at-leest 0 and v(N) = 1, it follows that 0 < v(R) 5 1
for all coalitions R. If |R| < |T|, then there exists S € Z satisfying R CS # T and |S| = |T|;
this implies that ¥(R) < v(S) = 0, andso ¥(R) = 0. So, if all supersets of T are contained in

Z, the unique superadditive extension is the unanimity on T game, and clearly j € T isa dummy in
this extension. If all supersets of T are not contained in Z, then there exists R ¢ Z satisfying IR|
> |T|, j€R, andboth T\R and R N T are nonempty. Let ¥ be the unanimity on T game

except ¥(R) = 1/2. Clearly, ¥ is a superadditive extension of v, and j is not a dummy.
L odupd Msurersths
Lemmas 1-3 can be used to show uniqueness (assuming we already have existence) of a value

on partially defined games satisfying efficiency, symmetry, linearity, and dummy. With respect to

monotonic extensions, the formula given in your report is obtained. With respect to zero-monotonic

extensions, the following formula is obtained:

sy B gy Sl B o e 5 vl
SeZ(i) . Jes SeZ\Z(i) . ies

IS|>1 Isi>1



where Z(i) = {S € Z: i € S}. With respect to superadditive extensions, Lemmas 2 and 3 could be
used to find a unique formula if and only if Z is of the form {S C N: S| =1, k, k+1, .. , n}.

At least this is my conjecture at this point.

As you note in your report, these formulas clearly satisfy efficiency, symmetry, and additivity.
The difficulty is showing that the dummy property holds. The key error is in the characterization of
all simple partially defined games in which player i is a dummy. For awhile, I thought that I had a
patch, but then I found the following example.

Example. Let J = {1, 2, 4,5} and v is the simple partially defined game with the
following winning coalitions: 12345, 1234, 1235, 1245, 1345, 12, 13, 14. There is a unique (zero-)
monotonic extension, because the coalitions 123, 124, 125, 134, 135, 145 must be winning (supersets
of 12, 13, or 14), and the coalitions 234, 235, 245, 345 must be losing (subsets of 2345). Player 5 is a
dummy; however, the formula yields ¢5(v) = 1/20 # 0.

Thus, there is no value onwa.ll partially defined games with monotonic or zero-monotonic
extensions. I conjecture that existence can be proved for the monotonic and zero-monotonic cases when
J is of the form {1, k, k+1, ..., n}. The argument would go as follows. For zero-normalized games
when J is of the given form, the formula for player i can be written as a weighted sum of marginals
for i plus a weighted sum of v(S) where each S contains i and is of size k. Nowif i isa
dummy, all of the terms described above are zero. In order to complete the proof for the zero
monotonic case, note that i is a dummy in a partially defined game v with respect to zero-
monotonic extensions if and only if i is a dummy in the zero normalization of v with respect to zero-
monotonic extensions. This last statement is not true for monotonic extensions; however, I believe that
there may be another approach for this case. If my conjecture is correct, then there is something wrong
with your example on the top of the next to last page of your report. Actually, it was my trying to
figure out what “the game where all players except player 1 are dummy” meant that motivated the
preceeding work. This example gives some hope that a unique value may exist for superadditive

extensions, at least for Z with particular structures.

I think that your work, if continued, could result in a very nice, publishable paper. The
monotonic, zero-monotonic, and superadditive cases need to be examined_ throughly using the
axiomatics. This might be sufficient, but it would be betterto obtain general connections with the
geometric approach. Let me know what you plan to do. I would be interested in collaborating with

you if you wish.

I will close with a few words about recommendations. I would be happy to write you a

recommendation for another summer program, graduate study, or employment upon request. It is my
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policy to always share with you a copy of my letter of recommendation for you. If there is sufficient

time between your request and the receipt deadline, I will send you a first draft for comment. You

received two strong letters of recommendation when you applied to the REU program.

Good luck digesting all of this!

Sincerely,

S

David Housman



