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I. Introduction and Notation

A Cooperative Game is an ordered pair (N, w), where N = {1, 2, ... , n} represents players in a
game, and w is a real-valued function, called the worth function, which maps subsets of N onto real
numbers, with the condition that w(f) = 0. A subset of N, denoted S, is called a coalition; when S =
N, we refer to it as the grand coalition. We will be looking at a cooperative game with the property of
superadditivity; a game is superadditive if V S,T C N : SO\T =0, w(SUT) >w(S) + w(T).

An allocation for a cooperative game is a vector z = (z,, 25, ... , Z,,), Where z; represents an
individual -allocation, or payoff, to player i. An allocation method is a function which maps

cooperative games to an allocation. The allocation method which will be used in this study will have

the following four properties:
n
(1) Efficiency: Y, z; = w(N).
1="1

(2) Equal Treatment: If w(S|J{i}) = w(SU{j}) for all § C N - {4, j}, then z;(N, w) = z;(N, w).
(3) No Free Lunch: Let i€ N. If w(SU{i}) = w(S) + w(é) for all S s.t. i ¢S, then (N, w) = w(3).
(4) Additivity: z(N, v+u) = z;(N, v) + z;(N, u) for all games (N, v) and (N, u).

There is a unique allocation method which satisfies the preceding four properties; it is called the

Shapley value. A formula for finding the Shapley value of a cooperative game is given:

s—D! (n—2s)! ;
s, wy = 3 CEDEETR gy w5 — (i), where s = |1
SCN i
This project will look at the Shapley value to a specially-defined game called a forest-size game. A
forest-size game is represented as a graph, G=(V, E) with n vertices. V(G) represents the set of -
vertices in the graph G, and E(G) represents the set of symmetric pairs of an irreflexive, symmetric

relation on V. The following terms will be used throughout the report:

(1) Adjacency: Two vertices u, v are set to be adjacent, if the edge uv e E(G). Similarly, if two edges,

uv and uw are distinct edges of a graph G, then uv and uw are adjacent.

~
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(2) Incidence: If an edge uv € E(G), then vertices u and v are said to be incident with edge uv.

(3) Degree: The degree of a vertex v is the number of eﬁges incident with v.
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(4) Isolated Vertex: An isolated vertex is a vertex with degree zero.

(56) Order: The order of a graph, denoted p, is the number of vertices in the graph.

(6) Size: The size of a graph, denoted g, is the number of edges in the graph.

(7) Path: A u-v path, where u and v are vertices of a graph G, is an alternating sequence of vertices
and edges beginning with u and ending with v, such that every edge joins its preceding and succeeding

vertex, and that no vertex or edge is repeated in the sequence.

(8) Subdivision: A subdivision of a graph G is a graph obtained by inserting vertices of degree two
into edges of G.

(9) Connectiveness: A graph is said to be connected if for every two vertices u,v in G s.t. u # v, there

exists a u-v path in G.
(10) Subgraph: A subgraph of a graph G is a graph H s.t. V(H) c V(G) and E(H) C E(G).

(11). Induced Subgraph: An induced subgraph of a graph G on a subset of vertices S is a subgraph
G'=(S, E'), where E' is the set of all edges of G which are incident with two vertices in S.

(12) Component: A component of a graph G is a connected subgraph H s.t. no connected subgraph of

G with either more edges or vertices than H contains the subgraph H.

(13) Cycle: A cycle is a u-v path, where u = v and the path contains at least three edges.

(14) Forest: A forest is a graph with no cycles.

(15) Spanning forest: A spanning forest of a graph G is a forest which contains every vertex in G.

The players of the game itself are represented by vertices, and the worth function is defined as follows:

w(S) = |S| —k, where k is the number of components in the induced subgraph on the vertices in the

coalition S. 4 /
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II. Proof Tecl;m'ques



This section deals with two methods of proving many theorems about Forest-Size games. Using
the properties of the Shapley value allocation method and the Shapley value formula was not sufficient
for many of the more complicated graphs which have been examined during this study. The first
method, Forest-Size Decomposition, involves the creation of a number of subgraphs of the original
graph. The second method, The Difference Game, involves removing or adding an edge to the original
graph. The basic idea behind both of these methods is to look at graph games, determined by a

starting graph, whose Shapley value is easily calculated.
A. Forest-Size Decomposition

The original graph game, W(G = (V, E)), is represented by a number of subgraph games. These
games are constructed so that the Shapley value can be easily determined for one or more players in
the subgraph game. Finally, the Shapley value of a player in the original graph game can be
determined by summing up the Shapley values found in the subgraph games for that particular player.

The initial step in Forest-Size Decomposition is the creation of the subgraph games. A subgraph
game will consist of a subgraph of the original game, The order of the subgraph will be the same as
the order of the original graph. However, the edges in the subgraph are determined by a chosen set of
vertices, called X. The method of choosing X for each subgraph will depend on the theorem which is
being proved. After X is chosen, the edges in the induced subgraph on X are added to the subgraph;
no additional edges are added. Once a subgraph is constructed, the process may continue using a
different subset X, creating another subgraph.

The object of this procedure is to create a collection of graph games which will produce the same
worth function as the original graph gaine, when the worth functions of the subgraph games are
summed together. Therefore, every edge in the original graph will be present in at least one of the
subgraphs; it is possible that a edge can be present more than once. When computing the Shapley
values for each subgraph game, a negative multiplying factor will be necessary to account for edges
represented in more than one subgraph. Since the Shapley value allocation methed is additive, finding
the Shapley value of a player represented in the original graph is done by adding up the Shapley values

of that same player in all of the subgraph games.

B. The Difference Game

This technique involves three different graph gamés named Edge-in, Edge-out, and th¢ Difference
game DG(N,u). The original game is either the Edge-in or Edée—out game, and an edge:is removed

from the graph or an edge is added to the graph to create the other game. The Difference game’s



worth function is equal to the difference of Edge-in’s and Edge-out’s worth functions.

For example, look at the following two games.

Game 1 Game 2
w(l)=w(2)=w(3)=0 w(l) =w(2) =w(3) =w(12) =0
w(12) = w(23) = w(13) =1 w(23) =w(13) =1
w(123) =2 w(123) =2

Game 1 would represent the Edge-in game, and Game 2 would represent the Edge-out game, where the
edge removed from Game 1 was the edge 1-2. The difference game would l’)le the following:
u(l)=0-0=0

u(2)=0-0=0

u3)=0-0=0

u(12)=1-0=1

u(23)=1-1=0

u(13)=1-1=0

u(123) =2-2=0

The Shapley value for the Difference Game can be usually calculated by using the Shapley value
formula. After this is done, the Shapley value for the game in question can be found in terms of the
Shapley values of the Difference Game and an edge-added or and edge-removed game, using the

Difference Game Formula: #(Edge-in) — ¢(Difference Game) = ¢(Edge-out).

III. Results

This section is divided into two sections: base graphs and constructions. Base graph results involve
formulas for specific types of graphs, such as cycles and complete graphs. Construction results involve

formulas for graphs which are ”created”; creation methods include adjoining graphs and subdividing

edges.

A. Base graphs,

»
"

Formulas for certain graph games can be easily determined because of the symmetry of the players.

n—1

Theorem 1: Let G be a cycle C,,. The Shapley value fot each player is =7—.

P
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Proof: There are n players in the graph game W(G). The worth for the grand coalition equals n — 1.

By equal treatment and efficiency, each player shall receive 2 1, according to the Shapley value. %
n g

Theorem 2: Let G be a complete graph K,,. The Shapley value for each player is i T 1

Proof: A graph is complete if every vertex is adjacent to every other vertex. The proof is exactly the

same as the proof for Theorem 1. %

Theorem 3: Let G be a complete bipartite graph Km, m» Where 2-m = n. The Shapley value for each

son—1
player is 2.

Proof: A complete bipartite graph is a graph whose vertices are divided into two sets and every vertex
in a set is adjacent to all of the vertices in the other set, and none of the vertices in its own set. The

proof is exactly the same as the proof for Theorem 1. %

Other graphs need more proving machinery.

Theorem 4: For a wheel graph W,,, where n equals order(W ), the Shapley values for each player in

the graph game is defined as follows:
Let i be a player.

i . P SPRNRRON. AU
(1) If 4 is represented by a vertex on the rim of the wheel, then ¢,= g
! el S

(2) If i is represented by the hub vertex, then ¢,= 6 tn
Proof: By The Difference Game.

Let ab be a rim edge of the original graph. 3

Let the Edge-in game be the original graph game.

Let the Edge-out game be the game on the graph W, — (ab). '
Analysis of the Edge-out game: q

The graph W,, — (ab) is a series of C5 graphs edge adjoined together. {See Theorem @}

Spoke vertex players who are neither a nor b have the Shapley value % !

N

Analysis of the Difference Game:



The worth function values for the Difference Game equals 1 for all coalitions of size < n —1 which
. Tthe hatb ex. .
contain both players a and b, but not gz All other coalitions will have worth zero. Therefore, the only
coalition S for which a player i # a or b to have a non-zero marginal u(S) — u(S — i) is when S=N —h,

where h is the hub vertex. In this case, the marginal value equals -1. Therefore, the Shapley value
m—(n-1))n-1-1)
n! T (n)(n-1)

equals (-1) -

Analysis of the Edge-in Game:
Using the Difference Game formula, the Shapley value for a rim vertex player other than players a
or b equals %_Wi—l—) However, by an equal treatment argument, players a and b also have that

value.

Finally, by efficiency and-equal-—treatment, the Shapley value for the hub vertex equals the

following;:

(n—1) —(n—l)[%—m] = (n—l)—S(ntS_I)+% . (""1)+ .

Theorem 5: Let G be a complete bipartite graph Ko _, where n = 2+ z. Let the two vertices of degree
b

z be called a and b. The Shapley value for players a and b equals TlT—f-l_ E(n-l:T) The Shapley value

2

for all other players eq“als 3t a2y

Proof: By the Difference Game.
Let the Edge-out game be the original graph game.
1
Let the Edge-in game be the game on the graph W_“n.+’zab), where (ab) is the edge a-b.

Analysis of the Edge-in game:

The graph Vﬁi— (ab) is a series of C3 graphs edge adjoined onto the edge a-b. {See Theorem #}
2(n—2) (n-3)

Therefore, the Shapley value for players a and b =

3 2
—2n—-4 n-—3
S e
4n—8—-3n+9 ?
6
n+1

Analysis of the Difference Game: !
The worth function values for the Difference Game equals one for only the coalition {a,b}. All

other coalitions have the worth zero. This is because the edge a-b only affects coalitions which do not
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In each of the subgraphs generated by Forest-Size Decomposition, the Shapley value of a is 5

Therefore, the Shapley value for a in the original graph is -723 *
The following three theorems pertain to a class of graphs called Adjoining Graphs.

Disconnected graphs are comprised of a number of components which are graphs themselves.
Certain graphs can be also formed by bringing together, or adjoining, two distinct graphs at a common
edge or vertex. The Shapley value for players in games on these types of graphs can be determined by

looking at the games on these ”subgraphs.”

Theorem 7: Let G be a graph with k components. The Shapley value of a player, a, in W(G) is equal

to the Shapley value of a found in the forest-size subgraph game on the component containing a.

Proof: Perform a Forest-Size Decomposition on G, producing k subgraphs. The subset of vertices, X,
for each subgraph is determined by choosing all vertices in a distinct component.

The sum of the subgraph game worth functions is the same as the worth function of the original
graph game. Indeed, every edge is accounted for exactly once. Any maximal spanning forest can be
exactly represented in the collection of subgraph games by developing spanning forests using the exact
edges from the original spanning forests. These forests are maximal; if they were not, then this would
imply that the original spanning forest is not maximal.

Therefore, the Shapley value for any player a is equal to its Shapley value in the subgraph game
constructed on its component. But all of the isolated vertices in the subgraph act as dummies in the
subgraph game. Therefore, player a has the same Shapley value in the subgraph game only on the

component of a. %

Notation:
Let A and B be two distinct graphs, with a € V(A) and b € V(B).
Let a and b be called point vertices, and let p be the vertex of adjoinment, called a pivot.
G = (A- B)(a,b) is the vertex adjoined graph with respect to vertices a in A and b in B, where
V(G) = V(A)UV(B) —{a,b} U{p} and E(G)=E(A)UE(B). with a.aud b ideaHfied wtn p.

Theorem 8: Let G and H be distinct starting graphs, and let g be a vertex in G, and let h be a vertex
in H. Let K be the vertex adjoined graph (G- H)(g, h)’ The Shapley value for a player other than the
pivot player in W(K) equals the Shapley value for that player in W(G) or W(H). The Shapley value
for the pivot player equals the sum of the Shapley values for playet ¢ and h.



‘Proof: Perform a Forest-Size Decomposition on the \}ertex adjoined graph game. The subset of
vertices, X, for each subgraph is chosen by selecting all of the vertices of one of the two starting
graphs. The second subgraph is created by selecting the vertices of the other starting graphs.

The sum of the two subgraph games equals the worth function of the vertex adjoined game.
Indeed, coalitions consisting of players from one of the starting graph games have the same worth as
the same coalitions in (G- H)(g,h), because edges for spanning forests are chosen exactly for the
original game and the subgraph games. Coalitions consisting of players from both of the starting
graph games have the same worth as the same coalitions in the vertex adjoined game; spanning forests
are created using the same edges in both games. All of these spanning forests in the subgraph games
are maximal; if edges need to be added, then this would imply that the spanning forest in the vertex
adjoined game is also not maximal.

The Shapley value for each non-pivot player equals the Shapley value of the player in the subgraph
game constructed on the set of vertices in its starting graph. Therefore, its value does not change after
the adjoining process. The Shapley value of the pivot equals the sum of the Shapley value for the
pivot player in the two subgraph games. %

Notation:
Let A and B be two distinct graphs, with a,, a, € V(A) and b,,b, € V(B), such that a,a, € E(A)
and b,b, € E(B).
Let a, and b, be called upper point vertices and let a, and b, be called lower point vertices.

(A — B)(ayay,b,b,) is the edge adjoined graph at edges with respect to edges a,a, in A and b;b, in

When two graphs are adjoined at an edge, called a squeeze edge, the upper point vertices are
adjoined, as well as the lower point vertices. All edges incident to a point vertex are now incident to

the respective vertices incident to the squeeze edge. The rest of the edges remain unchanged.

Theorem 9: Let G and H be distinct starting graphs, with g,9, € E(G) and h,h, € E(H). Let K be
the edge adjoined graph. The Shapley value for each player represented by a vertex not on the squeeze
edge is not changed after the adjoining process. The Shapley value for players represented by vertices

on the squeeze edge equals the sum of the Shapley values on W(G) and W(H) minus %

Proof: Perform a Forest-Size Decomposition on (G — H)(g,9,,b,b5). The subset of vertices, X,
consists of all of the vertices in one of the starting graphs. Create two subgraphs by choosing the
vertices of the two starting graphs in this manner. 'F;“inally, a subset consisting of the two vertices
incident with the squeeze edge is chosen for the last subgraph.

4

The three subgraph games detérmine a worth funétion which is the same as the worth function of
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the edge adjoined game. Coalitions consisting of players from one of the starting graph games having
at most one point vertex player have the same worth as the same coalitions from the collection of
subgraph games: spanning forests are constructed exactly the same way in both cases. Coalitions
consisting of players from both starting graph games having at most one point vertex player have the
same worth as the same coalitions from the collection of subgraph games: spanning forests are
constructed exactly the same way in both cases. Finally, coalitions containing both point vertex
players have the same worth as the same coalitions from the collection of subgraph games. The
spanning forest for these coalitions is created by first adding the squeeze edge to the forest, and then
building around it. The spanning forests in the collection of subgraph games are constructed in the
same manner. In the first two subgraph games, the squeeze edge is counted twice; therefore, the
subgraph game consisting of only the squeeze edge counts as a negative worth.

The Shapley value for a non-vertex point player equals the Shapley value the player would have
received its respective starting game. The Shapley value for a vertex point player equals the sum of

the Shapley values for each subgraph game minus % (from the third game). %

The next theorem involve subdivisions of graphs.

Theorem 10: Let G be a cycle C,,. A subdivision of an edge results in an increase in the Shapley value

for each original player by Ul_)(}lTl)

Proof: A subdivision of a C), produces a C,, , ; graph. Therefore, the change in the Shapley values is

equal to the following:

S =1 1
A= T S e X

IV. Conjectures, Open Questions and Ideas

(1) Subdivisions on a chord of a cycle.
Let G be a cycle Cy. Label two non-adjacent vertices a and b. Add the edge a-b to the graph.
All two-degree vertices will be added to this "chord.” The resulting graph G’ is of order n. The

Shapley value for an added player equals 2 1 —1—1(—"2-_-_\—5. The Shapley value of the two non-labeled

original vertices equals %— n(+—l) i

(2) Two-Form adjoinings.

w e
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Attach m Two-Forms to a cycle C k at the same two vertices. The Shapley value for players on the

outer loop of the cycle equals the following:

m 3
E—1 J!
R

I=1 1T (k+1i)
0

=

1

(3) Proof Conjecture: All theorems dealing with Forest-Size Games can be proved using either Forest-
Size Decomposition or the Difference Game.

V. Appendiz
I. Shapley Value/Banzhaf Value program

The following is a Turbo Pascal ver6.0 program written in order to facilitate the process of finding

these results.

_— lz-_.
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program Shapprogram(input,output);

{BY DARREN LIM}
STULY 22, 1992}
{VERSION 1.2}

{DESCRIPTION: THIS PROGRAM WILL CALCULATE THE SHAPLEY VALUE OR THE ABSOLUTE
BANZHAF VALUE FOR FOREST-SIZE COOPERATIVE GAMES.}
{PROCEDURE: THIS PROGRAM WILL FIRST CALCULATE THE WORTHS FOR EACH COALITION.
IT WILL THEN CALCULATE THE APPROPRIATE ALLOCATION.}
{INPUT: NUMBER OF VERTICES, EDGES}
{OUTPUT: ALLOCATION VECTOR}

type
dset=set of charj;
set2=set of 1..15;
intset=array[1l..15] of boolean;
graphtype=array([1..15,1..15] of boolean;
arraytype=array[0..11000] of shortint;
array2type=array[1l..15] of real;
settype=set of 1..200;

const
digits:dset=['0'..'9"'];

{***************************************************************************}

function coalitionsize(b:intset;num:integer) :integer;
{Description: returns the number of elements in the coalition}
{Input: binary coalition} %
{Output: number of elements in the coalition} 3

var
temp, count:integer;

begin

temp:=0;

for count:=1 to num do

if b[count]
then Inc(temp) ;

coalitionsize:=temp
end;
{***************************************************************************}

function fact(n:integer) :real;
{Description: returns n!}
{Input: an integer n} B '
{Output: n!}

begin
if n<=1
then fact:=1.0 5
else fact:=n*fact(n-1) i j
end; c ;|
T T e T T e T T L

#

procedure binvector (number:integer;var inter:intset);
{Description: returns the binary vector for a number}

{Input: a number}
{Output: its number in binary vector form}



var
c,rem:integer;
int:intset;

begin
for c:=1 to 15 do
int[c]:=false;

ci:=0z
while number>0 do
begin
Inc(c);
rem:=number mod 2;
if rem=1

then int[c]:=true;
number :=number div 2
end;
inter:=int
end;
e e L T T LT L)

function findvalue(g:graphtype;num:integer;int:intset) :integer;
{Description: finds and returns the worth for a coalition}
{Input: adjacency matrix, number of vertices, binary vector for a coalition}
{Ooutput: worth of a coalition}

var
temp, count, index,c2:integer;
dset,markedset, copyset:set2;

begin {This is the most complicated procedure}
dset:=[]; {in the program. The Depth-First}
temp:=coalitionsize(int,num) ; {search algorithm is used to determine}
for count:=1 to num do {components in the induced subgraph.}

if int[count]
then dset:=dset+[count];
while dset<>[] do
begin
markedset:=[];
index:=1;
while not int[index] do
Inc(index) ;
markedset:=markedset+[index];
repeat
copyset:=markedset;
for count:=1 to num do
if (count in markedset)
then for c2:=1 to num do
if not(c2 in markedset) and int[c2] and g[c2,count]
then markedset:=markedset+[c2];
until markedset=copyset;
dset:=dset-markedset; %
for count:=1 to num do i :
if count in markedset
then int[count]:=false;

Dec (temp)
end;
findvalue:=temp

end;
{***************************************************************************}

alq_



function value(g:graphtype;num: integer;count:integer) :integer;
{Description: converts a number into a binary vector and finds the
corresponding coalition worth}
{Input: adjacency matrix, order of graph, coalition number}
{Output: worth of the coalition}

var ;
int:intset;

begin

binvector (count, int) ;

value:=findvalue(g,num, int)
end;
{***************************************************************************}

function twopower (n:integer) :integer;
{Description recursively returns 2 raised to the nth power}
{Input: exponent}
{Output: 2°N}

begin
if n=0
then twopower:=1
else if n=1
then twopower:=
else twopower:=2*twopower (n-1)
end;
T e e I e L

function computeshap(s,n,marg: integer) :real; &
{Description: computes Shapley value}
{Input: array of worths, n, s, number}
{Output: contribution to Shapley value}

var
marginal:integer;
temp:real;

begin

marginal:=marg;

temp:=marginal*fact (n-s)*fact(s-1) /fact(n);

computeshap:=temp
end; \
{***************************************************************************}

function computeban(n,marg:integer):real; ° f
{Description: computes Banzhaf value}
{Input: array of worths, n, s, number}
{Output: contribution to Banzhaf value}

var
marginal:integer; _ ! :
temp:real;

2

begin ¢
marginal:=marg;
temp:=marginal/twopower (n-1) ;
computeban:=temp

end;

B R



{***************************************************************************}

procedure coalition(g:graphtype;num:integer);
{Description: calculates the worth function for all coalitions and prints
allocation vector}
{Input: adjacency matrix, order of the graph}
{Output: none}

var
binarray:intset;
conum, count,marg, shapindex,result:integer;
arr:arraytype;
allocation:array2type;
tempstr:string;

begin
repeat
writeln(output, 'Allocation method options');
writeln(output);
writeln(output,'l - Shapley value');
writeln(output,'2 - Banzhaf value');
writeln (output);
write(output, 'Choose an option (1-2) =>"');
readln(input,result)
until (result>0) and (result<3);
for count:=1 to 15 do
allocation[count]:=0.0;
arr([0]:=0;
for count:=1 to twopower (num)-1 do g
begin SN
arr[count]:=value (g, num,count) ;
binvector (count,binarray) ;
conum:=coalitionsize(binarray,nun) ;
for shapindex:=1 to num do
if binarray[shapindex]
then
begin
marg:=arr[count]-arr[count-twopower (shapindex-1)];
case result of
l:allocation[shapindex]:=allocation[shapindex]+
\ computeshap (conum, num,marg) ;
2:allocation[shapindex]:=allocation[shapindex]+
computeban (hum, marg)
end; {Case}
end
end; % '
case result of
l:tempstr:="'Shapley(’';
2:tempstr:='Banzhaf ('
end; {Case}
for count:=1 to num do X
writeln(output,tempstr,count,')=',allocétion[count]:12:9); j
readln(input) . .
end; ;
{***************************************************************************}

procedure process(str:string;var numset:settype);

{Description: interprets an input string of edges}
{Input: sequence of integers and commas}

— o~



{Output: updated set of numbers for the adjacency matrix}

var
tstr:string;
tempint, code:integer;

begin
while Length(str)>0 do
begin
tstr:='";
while (str[1] in digits) and (Length(str)>0) do
begin
tstr:=tstr + str(l];
str:=copy(str,2,Length(str)-1)
end;
if str<>"!

then str:=copy(str,2,Length(str)-1);
val (tstr, tempint, code) ;
if code=0
then numset:=numset+[tempint]
else
begin
writeln(output, 'Error in string');
readln(input, str);
Halt (1)
end
end
end;
T T R T T T T
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procedure globalfilter; £y

var
numset:settype;
count, index, Vertnum: integer;
answer:string;
graphmat:graphtype;

begin
digits:=['0'..'9"'];
for count:=1 to 15 do
for index:=1 to 15 do
graphmat[count, index] :=false;
Write (output, 'Enter the number of vertices =>');
readln(input, Vertnum) ;
for count:=1 to Vertnum do
begin
numset:=[];
Write (output, 'Type the vertices adjacent to vertex ', count);
Write(output,' separated by commas =>');
Readln (input, answer) ;
process (answer,numset) ; 3
for index:=count+l1 to Vertnum do ;
if index in numset ;
then
begin :
graphmat[index, count]:=true;
graphmat [count, index] :=true
end

Y

end;

-



coalition(graphmat, vertnum)

end;
{***************************************************************************}

begin
globalfilter
end.

— [ ¢~
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