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+x% SECTION ONE *#x

THE FOUNDATION

I. INTRODUCTION:

The purpose of this paper is to examine various allocation methods and their respective
properties. Specifically, Section Two looks at different values in terms of the property total
population monotone (TPM). Values which are TPM on maximal classes of games are characterized.
The hope here is to determine optimal methods if TPM is to be considered an important factor in
fairness. Section Three begins by looking at aggregate monotonicity on the nucleolus. It further
explores the relationship between aggregate monotonicity and group monotonicity of the nucleolus on a
special class of games. This section provides definitions of the monotonicity properties and values of

interest along with a short review of the literature.

II. DEFINITIONS

An n-person cooperative game is a pair (N, v) where N = { 1,2, 3,...n} is the set of
players and v is a real-valued function on all nonempty coalitions S C N. We use the convention
that v(#) = 0. We are mainly concerned with superadditive games, that is, games for which
v(SUT) > v(S) + v(T) for all groups S and T satisfying S N T = . Two special classes of

games are of special interest. The game (N, v) is convexif v(SUT) + v(SNn T) > v(S) +

v(T) for all groups S and T in N. The game (N, v) is [n, n-1] if v(S) =0 forall |S| <

n—2; in the following, we will use the notation a; = v( N — {i}) for i € N and a, = v( N).

Define the vector x = (x;, Xy, X3, . . . Xn) with real components to be an allocation of an n-

person game where x; is the value being allocated to player j. An allocation method or value is a




function § which, given any game (N, v), assigns an allocation x = 4(N, v) such that Y x; =
ieN
v(N). This latter condition is referred to as efficiency. A value satisfies the equal treatment property

if two individuals receive the same payoff whenever they have the same effect on the value function: if
v(SU{i}) = v(SU{j}) forall SC N — {i,j}, then (N, v) = 0,(N, v). The core of a game (N,
v), denoted by core(N, v), is the set of all efficient allocations such that 3 x; > v(S), forall S

ieN
C N. An allocation method, @, is said to be group rational if whenever core(N, v) # 0, it

follows that #(N, v) € core(N, v).

We now define the monotonicity properties of interest. Let 1S be the characteristic vector on
the subset S of N, that is, the i-th component of IS is 1 if i€S andis 0 if i € S. The
value 0 is aggregate monotone at the game (N,v) if Vie N 6,(N, v + ¢ ly) isa

nondecreasing function of ¢ in a neighborhood of ¢ = 0. The value # is group monotone at the

game (N,v) if VSCN, VieS, 6,(N,v+ ¢ 1S) is a nondecreasing function of ¢ in a
neighborhood of ¢ = 0. The value § is total population monotone at the game ( N, v) if 6,(S, v)
<0;,(T,v) forall ie SCTC N. Let TPM(d) denote the set of games (N, v) at which the
value @ is TPM. A value 6 will be called Maximally TPM if there exists no value 8’ for which

TPM(6) is a strict subset of TPM(4').

III. METHODS:

We now define three values that are well known in the game theory literature and a new value.

The Shapley Value (Shapley, 1953) for individual i is the average of the marginal values individual i

brings to the group over all possible orderings:
~1)! (n-s)!
é;(N,v) = ¥ ﬂn'(n_s) [v(S) — v(S- {i}) |, where s denotes [S|.
Young (1985a) showed that the Shapley Value is the unique symmetric and strongly monotonic value,
and so is group monotone on all games. Moulin (1988) states in an exercise that the Shapley Value is

totally population monotone on convex games. It is also well-known that the Shapley Value is group



rational on convex games but not on all games which possess a nonempty core.

Given a game (N, v), let e(x, S) = v(S) —.sti be the excess of group S relative to the
cost allocation x; this is a measure of how much groili S is likely to complain about the allocation
x, because e(x, S) is the difference between what group S can obtain on its own and what it would
obtain according to x. Let e(x) be the vector of excesses e(x, S), S # 0, N, ordered from highest
to lowest. The nucleolus (Schmeidler, 1969) is the individually rational allocation v( N, v) that
minimizes e(x) lexicographically. In words, the nucleolus is the individually rational allocation which
lexicographically minimizes the maximum excesses. Jew (1988) gave a sufficient for the nucleolus to be
not group monotonic (with respect to coalitions other than N). Megiddo (1974) showed that the

nucleolus is not aggregate monotone at a nine player game. Young (1985b) further showed that the

nucleolus is not aggregate monotone at a six player game. However, the nucleolus is group rational.

We will need a characterization of the nucleolus due to Kohlberg (1971) in the third section. A
collection B of subsets of N is balanced if there exists ’\S > 0 such that SGE%Asls = 1N . An excess
coalition array for an allocation x with respect to the game (N, v) is a partition B, ..., B, of oN
— {0, N} satisfying e(x,S) > e (x, T) whenever S € B,, TeB; and i <j. An excess
coalition array is balanced if LPJ B, is balanced for p = 1, ..., q. Kolhberg (1971) proves that the

=il
allocation x is the nucleolus for the superadditive game (N, v) if and only if there exists a balanced

excess coalition array for x with respect to (N, v). A nondegenerate game is a game for which the

nucleolus yields a unique, balanced excess coalition array.

Given that the maximum an individual can expect is their separable value, M;

= v(N) —

v(N—{i}), and the minimum is the maximum of what they can make with a group, m; =

max {v(S) — Z M;: i€S C N}, the Tau value (Tijs, 1981) is the individually rational
jeS—{i}

allocation that yields a straight-line compromise between the maximum and minimum entitlement

allocations:



(N, v) = dm+ (1- A)M

where n
2M; ~¥N)
=1

n

.E M; — i B

=1 i=1

A=

This defines the Tau value on quasibalanced games. That is, games for which m; < M; for all ieN
and ) m; < v(N) <3 M,.
ieN ieN

Define a new method, the Maximum Egalitarian Method , 7 , such that 5; = Z,(N, v) +

%[ v(N) — E Z;(N,v)] where Z,(N,v) = max {n;(N-k,v)| ke N-i}.
JEN

A fundamental trade-off appears between the Shapley Value, which is group monotone but not
group rational on all games, and the nucleolus, which is group rational but not group monotone on all
games. Young (1985a) showed that no value is group rational and group monotone on games with five
or more players. Jew and Housman (1989) showed that no value is group rational and group
monotone on games with four or more players, but that there exists an infinite class of values that are
group rational and group monotone on three player games. The primary motivation for this research is
to discover the extent of this trade-off. For example, it is well-known that the per capita nucleolus is
group rational and aggregate monotone. Returning to the nucleolus, we ask on which games this value
is group monotone. A similar question for the Shapley Value would be on which games it is group

rational. We have considered such questions with respect to other values and the total population

monotonicity property also.



*x% SECTION TWO #x**

THE MOST TPM OF ALL

IA. One of the measures of fairness is TPM. I will exhibit a game for which three popular methods,
¢, 7, v, are not TPM, but for which a fourth method, 5 , is TPM.

Let N={1, 2,3}, v(N)=1, v(12) =.25, v(13) = v(23) = .666, and v(i)=0 Vi€ N.

A. #(N, v) = (.264, .264, .472). ¢ is not TPM at (N, v) because player 2 can make more in

coalition {2, 3} since ¢(23, v) = (—, .333, .333) and .264 is not greater than .333.

B. 7(N, v) = (.205, .205, .590). Likewise, 7 is not TPM because player two can make more

in the {2, 3} coalition in which it will get .333.

C. v(N, v) = (.195,.195, .611) .  Again, player 2 is better off in the {2, 3} coalition as it

will make .333 which is greater than .195.

D. n(N, v) = (.333, .333, .333) which is TPM since no player can do better than .333 in any

other coalition.

Thus, where ¢, 7, v fail to be TPM , 7 is TPM, suggesting it is in some sense “fairer.”

I B. The following diagram geometrically represents the regions where each value is TPM. We
consider three player games where v(i)=0Vi=1,2,3, v(12)=a, v(13)=v(23) =8, v(N)=
1. The key idea is that for any symmetric method 6, 6 is TPM at (N, v) if and only if 8,(N, v) >

a/27 ﬂ/2? 02(N, V) 2 a/2,[3/2, and 03(N, V) 2 /8/2
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II. THEOREM: 75 is TPM on all [n, n-1] games for which any method satisfying the equal
treatment property can be TPM on.

PROOF: The theorem will be shown by a series of three claims.

A. Suppose @ is any value satisfying the equal treatment property (ETP). Then (N, v) €
TPM(0) & 6;(N,v) > ma.x{ IJ;él} Vi€ N. Indeed,
(N,v) € TPM(0)¢& VieSCN 6,8, v) < 8;(T,v) by definition
< Vi# 0N, v) £ 0,(N,v) since by ETP 6,(S, v) =0 if |S| < n-2
o Vi%j ;L < 6,(N, v) since by ETP 0,(N<j, v) =

& Vi max{ 1|,];té1}<l9(Nv)

B. (N,v) € TPM(n) & EN max{ a |j¢i} < (n-1) v(N) . Indeed,
i€
(N, v) € TPM(n)x> 95,(N, v) > ma.x{ Ij;él} VieN by A.
& maX{ L] j#i} + A v(N) - Zmax{ —L| j#i} |

>max{ IJ;él} Vi € N by def. of 5



& v(N) 2 szax{ i | ji)

& (-1)v(N) > 3 max{ a| j#i} .

ieN

C.3 0 suchthat § TPM at (N,v) = 5 is TPM at (N, v). Indeed, suppose @ is a
value and (N, v) is a game.
(N, v) € TPM(0) & 6;(N, v) > max{ 1|J;é1} VieN by A
= V00 = T 00N ) 2 T max( 721
= (n—l)v(N) SN max{ j|_];é1}
ieN
= (N, v) € TPM(n) by B.

A,B,C = n isTPMon all [n, n-1] games for which any method satisfying ETP can be TPM.

III. THEOREM: There is no value which is TPM on all games for which some value is TPM.
PROOF: Let H= {(N,v): 36 suchthat § is TPM at (N,v)}. Suppose 0 is a value such
that TPM(6) = H. Consider the four-player game (N, v) defined by v(N) =4, v(ijk) = 3,
v(12) =2, and v(S) = 0 otherwise. Let x = (N, v). By efficiency, x; + x, + x5 + x4 = 4.
By TPM applied to the three player coalitions, x; + x ; + X > 3 for all three player coalitions
{ijk}. Summing these inequalities and using efficiency, we obtain 4-3 < 3-(x; + X, + X5 + X4) =
3-4. Hence, the inequalities must hold with equality. So, 6(N,v) = (1,1, 1,1) and 6(123, v) =

(1, 1, 15

Now, if we change the game slightly, we can show that this method is not TPM. Define (N, v)
such that v/(N) = 3.6, v/(134) = v/(234) = 0, and leave all other coalitions as is. Since there is
no change in the subgames determined by the coalitions {123} and {124}, players must receive the
same allocation as before. That is, 6(123, v') =(1,1,1, —) and 6(124, v’) =(1,1,—,1). In
order for (N, v') € TPM(6), the grand coalition must consider the triples, and 8(N, v/ g =L L

1). Yet, ¥ 6, (N,v') > 3.6 = v(N), violating efficiency. Thus, 6 is not TPM at (N, v1).
ieN
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Could this mean that (N, v') isnotin H? We will show that (N, v/) € TPM(f) for some
other value 6. We need only define § on (N, v') and its subgames. This method gives all
allocations to players 1 and 2. 0(12,v') = (1, 1, —, —), and 0(123, v') = 8(124, v/)= (1.5, 1.5,
—, —). For the grand coalition, again allocate to 1 and 2 such that 8(1234, v') = (1.8, 1.8, 0, 0).
This method & is TPM at (N, v/) where 6 was not. Yes, (N, v') € H. We have shown that

there is no value which is TPM for every game in H.

IV. Characterize the class of maximally TPM values.

LEMMA: 6§ isTPMat (N,v) & 6,(T-j,v) <8,(T,v) VijeTCN

PROOF: Given 6 is TPM @ (N, v), show 6,(T-j,v) < 0,(T,v) Vij € TCN.

By definition of TPM, 6,(S,v) < 6,(T,v) Vij € S CT C N. Therefore,let S =T -j, and

consequently 0,(T-j, v) < 8,(T,v) Vij € TCN.

Given 6;(T-j,v) < 0,T,v) Vij € TCN, show @ is TPM @ (N, v). Suppose we only
have one and two player coalitions. For this game to be TPM 6,(i, v) < 0,(ij, v) Vij € TCN.
Now, if we change the game by adding a three person coalition, for TPM to hold we must have
(a) 0,33, v) < 0,(ij,v) , (b) 0;(i, v) < 0,(ijk, v) , and (c) 0,(ij, v) < 0,(ijk,v) Vij € TCN.
By given, both a and c are true. This, in turn, forces b to be true, and hence TPM on this game. If
we extend this process we can inductively see that if all the allocations of a subset are greater than or
equal to all the possible allocation of that subset minus one player, then the value will have to be
TPM. That is, 8;(T-j,v) < 8,(T,v) Vij €eTCN = 6#isTPM @ (N,v). Hence, 0 is

TPM @ (N,v) <& 6,(T-j,v) < 0,(T,v) Vij e TCN.

We now note that given any value 6, there exists a semi-value a for which }° «;(N,v) =1 for all
ieN
games (N, v) and 6 can be written as

0;(N, v) = 2;(N, v) + (N, v)[ v(N) - 30 (N, v) ]
JEN



Sk

where

z;(N, v) = max { 6;(N-k, v) | k € N—j }.
The maximally TPM values can now be characterized as those values for which o satisfies a

seemingly natural property.

THEOREM: A value 6 is maximally TPM < «(N,v) > 0 for all games (N, v) satisfying

> z;(N, v) < v(N).
JEN
PROOF:

A. Given @ is a maximally TPM value, we will show that «(N, v) > 0 whenever (N, v)
satisfies ), z;(N, v) < v(N). Indeed, suppose that this were not true for 4, thatis, 3 (N, v) such
jEN

JE
that Y- z;(N,v) < v(N) but o;(N,v) <0 forsomei € N. We can see that 6 is not TPM at

JEN
(N, v) because 6,(N, v) < z;(N, v) = 0,(N—k, v) for some k € N—i. So, we define a new value 6

to show that 0 is not maximally TPM. Let 8(N, ¥) = (N, v) for all (N, ¥) # (N, v), and

O(N, v) = z,(N, v) + %[ v(N) _'Esz(N’ v) ]. Now, suppose (M, u) € TPM(0), and i,j € SCT
C M. Then (S,u), (T, u) JEE TPM(0) = (S,u), (T,u) # (N, v) since 6 is not TPM at
(N,v). Hence, 8,(S,u) = 6,(S,u) < 0,(T,u) = 8,(T,u) = (M,u) € TPM(8), which shows
that @ is TPM wherever 6 is TPM. Moreover, by definition of (N, v) , 8;(N, v) > 8,(N=k, v)
Vk € N—i which shows that § is TPM in more places than . Thus, when a(N,v) <0, @ is
not maximally TPM. By the contrapositive, for # maximally TPM, a(N, v) > 0 whenever (N, v)

satisfies 3 z;(N, v) < v(N).
JEN

B. Suppose @ is a value for which «(N, v) > 0 for all games (N, v) satisfying

> z;(N,v) < v(N). Suppose also that # is a value which satisfies TPM(d) C TPM(8). We will
JEN
show that @ is maximally TPM through a series of claims that eventually show that TPM(f) =

TPM(F).
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B.1. (N,v) € TPM(8) <« 3} z;(N, v) < v(N).
JEN

B.1.i. Given 3 z;(N, v) < v(N), show (N, v) € TPM(d). Suppose § were not TPM.
JEN
Then 3 i #k for which z,(N, v) + o;(N, v) [v(N) — 37 z;(N,v) ] = 6;(N,v) < 6,(N—k,v) <
jeEN
zi(N, v). Therefore, o;(N, v)[ v(N) -3 z;(N,v)] < 0. Since ) z;(N,v) < v(N) by the given
JEN JEN

for i, a;(N, v) < 0 which contradicts the property of  given in the first sentence of B.

B.1.ii. Given (N, v) € TPM(6), show 3" z;(N, v) < v(N). Since ) a;(N,v) =1, 3i
JeN JEN
€ N such that o;(N, v) > 0. Forthis i, 2N, v)+ a;(n, v)[ v(N) - 37 z;(N, v) | = 6,(N, v) >
JEN
z;(N, v) since (N, v) € TPM(). This implies that a;(N, v)[ v(N)- ¥ z;(N, v) | > 0 which
JEN
implies that v(N) - 37 z;(N, v) >0 since a;(N,v) > 0. So, 3 z;(N,v) < v(N).
JeN JEN

B. 2. 6(N, v) = (N, v) whenever (N, v) € TPM(). We show this by induction on the
number of players. Clearly, 9(N, v) = 0(N, v) whenever |[N| =1. Now suppose that the two values
are equal on all games with fewer than n —1 players, and let (N—n, v) € TPM(f) be a game on
n—1 players. We will show that 6(N-+d; v) = 8(Nzwm, v), which will complete the induction. For
eachi € N —n, define a new game (N, vi) as follows:

v(S) if ngS
v‘(S):{ v(S—n + i) if neS and igS$S
v(S—n) + 0;(S—n,v) if n€S and i €S
We claim that for allj € S C N:
0,(S, v) if ngs$s
0;(S—n+i, v) if neS,i¢S, and j#n
0;(S, v') = { 0;(S—n+i, v) ifneS,ig$S, and j=n
0;(S—n, v) if neS,i€8S, and j#n
6,(S—n, v) if neS,i€S, and j=n

Indeed, if n ¢ S, then (S,v’) = (S-n,v). f n€S and i ¢S, then (S, v¥) = (S—n+i, v)
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with the understanding that player n in (S, v') corresponds to player i in (S—n+i, v). So, the
only cases for which the claim in not clearly true is for S containing both i and n. We show the
claim inductively on the size of S. Suppose the claim holds for all proper subsets of S, and i,n €
S. If j € S—n, then
z;(S, v)) = max{ 6;(5-k, v') |k € S5}
= max{ 0,(Sn, v¥), 0,(S-, v¥), 0,(Sk, v) |k €S — {j, n, i} }
= max{ 6,;(Sn, v), 0;(Skn,v)| k€S — {j,n,i} } by induction hypothesis
= 0;(S-n, v) since (N-n, v) € TPM(6).
If j=n, then
2n(S, v') = max{ 0a(Sk, v') |k € Sn}
= max{ 0n(S, v¥), 0;(Sk, v’) |k € S — {n, i} }
= max{ 0,(Sn, v), ,(Snk, v) [k € S — {n, i} } by induction hypothesis
= 0,(S5n, v) since (N-n, v) € TPM(9).
Now, by summing all the z,’s, we see that

> z4(S, v¥) = Y 04Sn,v) + 6,5n,v)
j€Ss j€S—n
= v(S-n) + 6;(Sn,v)
= v(9).
Hence, 0,(S, vi)=2 (S, v') forallj € S and our claim follows by induction. That is, 6;(S, v?)
= 0;(Sn,v) forall j €S —n and 6x(S, v') = 0,(S-n, v). It is now straight-forward to show that
(N, v') € TPM(0) which then implies that (N, v’) € TPM(f). So,
f;(N-n, v) = 8;(N-n, v') since (N-n, v) = (N-n, v¥)
= 0n(N-i, v') since (N-n, v') = (N-i, v') with i and n exchanged
< 6a4(N,v') by TPM
= ¥ 88, v) — ¥ 9N+
JEN jEN-n

< V(N — % éj(N-Il, v¥) by efficiency and TPM
jEN-n
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= v(N) — v'(N-n) by efficiency

vi(N) — v(N-n) since (N-n, v’) = (N-n, v)

= E 0 ;(N, v} - 2 0 j(N-n, v) by efficiency

JEN JEN

=3, 0;(Nn,v) + 6, (N—n, v) — 3 0;(N-n,v) by claim formulas
jJEN-n jEN-n

= 0;(N-n, v).

This shows us that 3> 8,(N-n,v) < ¥ 6,(N-n,v). However, since each of these terms is equal
i€N-n i€N-n
to v(N-n), all of the proceeding inequalities must be equalities. Hence, 6,(N-n,v) = 6,(N-n, v)

which is what we were to show.

B.3. If (N, v) ¢ TPM(6), then (N, v) ¢ TPM(d). Indeed, assume (N, v) ¢ TPM(6),
and that 6 is TPM at all subgames of (N, v). From part B.l., this implies that
Z max{0;(N—k,v) [k € Nj} = 3 z;(N,v) > v(N). Since 6 is TPM at all subgames of
N

jeN JE
(N, v), part B.2. implies that Z max{ 6 j(N-k,v) | keNj } = 2 max{0;(N-k, v) | k €N-j } >

jeN JEN
v(N). However, by TPM and efficiency, v(N) = E G N, v) > E max{ 6 j(N-k, v) | k €N-j } >
€N JEN

v(N). This leads to a contradiction since v(N) is not strictly greater than itself. By this we can say

6 isnot TPM on (N,v). Hence, (N,v) ¢ TPM(8) = (N,v) ¢ TPM(d).

By combining parts A., B.1., B.2., and B.3., we prove our theorem.
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*xx SECTION THREE *xx

AGGREGATE AND GROUP MONOTONICITY AS SEEN BY THE NUCLEOLUS

I. It has been previously proven that the nucleolus is not aggregate monotonic for games with six or
more players, and is aggregate monotonic for all three player games. We will now show by counter

examples that the nucleolus is not aggregate monotonic for all four and five player games.

A. Example 1. Consider the following 4 player game: v( S) = 0 for all S except v(123) = 4;
v(124) = 7; v(234) = 8; and v (1234) = 10.5 + €. The nucleolus is ( 1.25 + 0.5¢, 4.25 — 0.5¢,

1.75 + 0.5¢, 3.25 + 0.5¢).

Why is this the nucleolus? Let z = ( 1.25 + 0.5¢ , 4.25 — 0.5¢ , 1.75 + 0.5¢ , 3.25 + 0.5¢).
First, collect coalitions by grouping them in terms of their excess vectors, in decreasing order.
B =234 11 B, = 24 3k BB Sy = 0 4198 o B = {2) L
By this we mean that e( z, 1) = e(z,234) > e(z,124) = e(2z,3) > e(2z 13) ... Suppose x is
the nucleolus. Since x is the imputation that minimizes the maximum excess and z is an
imputation with a maximum excess of e(z, 1) = —1.25 — 0.5¢, no excess of x can exceed e(z, 1).
In particular,

e(x,1) = v(1)— x, =0 — x; < — 125 — 0.5

e(x,234)= v(234)—x, — X3 — X4 = 8—Xy — X3 —%x4 < —1.25 — 0.5e.
Combining the two inequalities, we obtain 8 — x; — x) — x3 — x, = 8 — v(N) = 8 —
105 — e < —2.5 — e. Simplifying , we get 0 < 0. This means the previous inequality should
be a strict equality. In other words, — x; = —1.256 — 0.5¢ or x; = 1.25 + 0.5¢, and
e(x,1) = e(x,234) = e(z,1). So, x and z have the same maximum excess which is obtained on

the same number of coalitions. Now since x is the imputation that lexicographically minimizes the
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maximum excesses, no excess other than e(x, 1) and e(x, 234) can exceed the second highest excess

of z. Specifically, e(x,3) < e(z,3) and e(x,124) < e(z, 3). Now an argument similar to the

one given earlier yields x3 = 1.75 + 0.5¢, e(x,3) = e(x, 124) = e(z, 3). In a like manner we
determine x, from %®B,, where x, = 3.25 + 0.5¢. We know from efficiency v(N) = x; + x,
+ x3 + x4. Using known values for v( N), x,, x5, X4, we can solve for x, = 4.25 — 0.5¢.

Therefore, x = ( 1.25 + 0.5¢ , 4.25 — 0.5¢ , 1.75 + 0.5¢ , 3.25 + 0.5¢) is the nucleolus. Notice,
as we increase v(N) by increasing €, the value of x, decreases. By definition, the nucleolus is not
aggregate monotonic. If we change the game so that v(N) > 13 and the rest remains the same, the

nucleolus for those games will be aggregate monotonic.

B. Example 2. Consider the following five player game: v(S) = 0 forall S in N except for
v(1234) = 25; v(2345) = 10; v(1345) = 20; v(1245) = 45; v(1235) = 30; v(12345) = 49 + ¢,
for some € > 0. Using similar methods to example 1, the nucleolus for this game can be found to be
x = ( 12.75 — 0.25¢, 12.75 — 0.25¢, 2 + 0.5¢, 9.5 + 0.5¢, 12.0 + 0.5¢ ) where the
excess vectors form the following sets: B, = {1245, 3 }; B, = {4,1235}; B3 ={34}; B, =
{5,1234}; Bs={1,2} ... Here, x; and x, will decrease as v(N) is increased by some
sufficiently small e. Hence, this game is not aggregate monotonic. =~ However, if we change the
game, by keeping all values the same except for v(N) which is made greater than or equal to 50,
the new game will be aggregate monotonic. For example, define a new game w such that w(S) =
v(S) forall S in N except when S = N, where w(N) = 50 + ¢ for some ¢ > 0. The

nucleolus for w is x4 = (125 + ¢, 125 + ¢ 2.5 + 0.5¢, 10.0 + 0.5¢, 12.5 + 0.5¢ ).

II. THEOREM: The nucleolus is aggregate monotonic at the nondegenerate, [n, n-1] game (N, v) if
and only if there is no three player coalition R that satisfies e(x,1) = e(x,i°) > e(x,]°), e(x,]j)

for all i€ R and j € R where x is the nucleolus of (N, v).
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PROOF:

A. Assume there exists a three player coalition R that satisfies e(x,i) = e(x,i°) >
e(x,j°), e(x,j) forall ie R and j ¢ R where x is the nucleolus of (N, v). Without loss of
generality, we will denote the three player coalition as {1, 2, 3} for clarity. From the definition of
excess vectors, v(1) —X; = a; — X3...— X n. Thiscan be rewritten as x; = [v(N)—a;]/2.
Similarly, x, = [v(N)—a,;]/2, and x5 = [v(N)—a3]/2. Since the games we are looking at are
efficient, v(N) =’ZNXi. Substituting the above values, we obtain v(N) = ([v(N) — a;]/2) +

1€
([v(N) — a5]/2) + ([v(N) — a3]/2) + jz::4 X;, or j§4xj = [-v(N) + a; + a5 + ag]/2. This
means there exists at least one payoff between x, and x, that decreases as v(N) increases. Hence,

the nucleolus is not aggregate monotonic.

B. Assume there is no three player coalition R that satisfies e(x, i) = e(x, %) > e(x, %),
e(x,j) forall i € R and j ¢ R where x is the nucleolus of (N, v). We want to find the
maximum excesses to solve for possible excess coalition arrays. Let S = coalition consisting of q

elements, where q < n. If ¢ = 1, then e(x,S) =e(x,i) =v(i) —x; = 0 — x;.

This could

be a maximum. If 2<q < n— 2 then e(x,S) =v(S) — Y} x; = 0 — 3 x;,. From above
ieS ieS
we can substitute — x; = e(x,i) to get e(x,S) = Y e(x,i). Since x; > 0 forall i € N, e(x,i)
ieS
< 0. Hence, ) e(x,i) <e(x,j) foreachj € S. Therefore, each singleton subset of S will have a
ieS
larger excess than e(x, S) and e(x, S) is not a maximum. If q=n— 1 then e(x,S) = e(x,i°) =

a; — Y, x;. This could be a maximum. Using Kolhberg’s Theorem, we know that the excess
i€eS

coaltion arrays must be balanced in order for x to be the nucleolus. Hence, the only essential cases

are when S has either 1 or n-1 elements. Specifically, there are six possible cases:

case 1: o(x,1) = e(x,1°) > e(x,2) = ex,2°) > e(x,3) =... = ¢elx,n)
case 2: e(x, 1} = e(x,1°) > e, 2) = ¢(x,2°) > ¢(x,3)=... =61
case d: e(x,1) = e(x,1°) > elx,2) = ¢[x,3) =... =elx,n)

case &: e(x, 1) = e(x,1°) > e(%,2°) = X, 3°) =...=¢xn")
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case 5: e(x,1) = e(x,2) =e(x,3) =...=e(x,n)

case 6: e(x, 1°) = e(x, 2°) = e(x,3°) =...=e¢(x,n)
Note that in cases 1 and 2, e(x, 12) could be less than e(x, 2) and greater than both e(x, 3), and
e(x,3°), which would not change the formulas for the nucleolus to be given below. Consider first case
1:

e(x, 1) = e(x, 1%,

e(x,2) = e(x,2°, and

e(x,3) =...=e(x,n)

which is equivalent to

V() = x, = a; — (ag — X1 ),
v(2) — x, = a; — (ap — x3 ), and
v(i3) — x3 = . = v(n) —Xn.

Solving for x, we obtain
x; = [ag — a; + v(1)]/2,

X, = [ag — ay + v(2)]/2, and

x; = [{a, — v(1) + a; — v(2)}/2 + (0 — 2) v(j) —.i v(i)]/(@ —2), for3 <j <n.

1=

By incrementing v(N) = a;, by ¢, both x; and x, result in an increment by €/2, and xj, ...,

Xn remain unchanged. Thus, the nucleolus is aggregate monotonic for games in this case. Similarly,

we can solve case 3:

x; =[ag —a, +v(1)]/2 ,and

%= [ = ¥(D}/2 + (@ =DY0) —% v0) 1/@ =1, for2<is n.
and case 5:

x; =[ nv(j) + 3o — 3, v(i)]/n, for1<j< n.
ieN
In both cases we can see that the nucleolus is aggregate monotonic for games in the designated cases.

We now turn to case 2:
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e(x, 1) = e(x, 19,
e(x,2) = e(x,2°, and
e(x, 3°) = ... = e(x, n°)

which is equivalent to

v(l) — x; = a; — (ap — %),
v(2) — x5 = a; — (ag — x ), and
a3 = X3 = ... = an —Xn.

Solving for x, we obtain

x; =[a —a +v(1)/2,

X =[a; — ay + v(2)]/2 , and

x; = [{a — V(1) + 2, — v(2)}/2 — (n — 2) a +izi;3 a; 1/(n—2), for3<j<n.
By incrementing v(N) = a, by €, we obtain that both x; and ;2 increment by €¢/2, and xg,
..., Xn remain unchanged. Thus, the nucleolus is aggregate monotonic for games in this case.
Similarly, we can solve case 4:

x, =[ay —a; +v(1)]/2 ,and

x; =[{ag+ a, —v(1)}/2 —(n - 1) a; +i§iZ2a,- f{n-1), for2<jgn
and case 6: 0

x; =[ayg —na; +3 a; ]/n, forl <j<n.

i€eS

In either case, an increment of a; by ¢ results in an increment of every x ; by some positive

multiple of €. Hence, the nucleolus is aggregate monotonic for games in these cases.

We have obtained formulas for the nucleolus for all possible cases when there is no three player

coalition R that satisfies e(x,i) = e(x,i%) > e(x,]°), e(x,j) forall i € R and j € R where x

is the nucleolus of ( N, v). In all of these cases, the nucleolus is aggregate monotonic for the specified

games.
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II. THEOREM: For [n, n—1], nondegenerate games, the nucleolus is aggregate monotonic if and

only if it is group monotonic.

PROOF:

A. Suppose the nucleolus is group monotonic on all [n, n — 1], nondegenerate games. By

the definition of group monotonicity the nucleolus is aggregate monotonic.

B. Suppose the nucleolus is aggregate monotonic for all [n, n— 1], nondegenerate games.

From the previous theorem, there is no three player coalition R that satisfies o3, i) = o(x, i’} >
e(x,j%), e(x,j) forall i€ R and j ¢ R where x is the nucleolus of (N, v). This results in there
being only six possible formulas for the nucleolus, as shown in the previous proof. We want to test for
group monotonicity. To do this we increment v(S) by some small ¢ while leaving all other values
constant, for all SC N, and look at x; forall i € S. If they remain constant or are also
incremented, then the nucleolus is group monotonic for all games in that case. In [, n — 1] games,
v(i) and v(i°) for all i € N are the only values that need be incremented since the other coalitions
do not affect x;. For example, case 1:

x; = [ag — a; + v(1)]/2,

X, = [ag — ay + v(2)]/2, and

x; = [{ay = v(1) + 2, — v@)}/2 + (0 — 2) v() —ii v()1/(a = 2), for3 <j <n.
If we increment v(1) by e we need only to look at x,, which in t;is case is incremented by ¢/2.
If we increment a; by €, we need to look at x,, ..., xn,. Here X, increases by ¢/2, and the
remaining x;’s for 3 <j < n hold at the same value. This process can be repeated for the
remaining coalitions and it can be seen that this case is group monotonic. In general, we can look at
the formulas for the nucleolus and look at the coefficients of the v(S) being changed. If the coefficient
is nonnegative for all x; for all i € S, then the case is group monotonic. Upon examination of the

general formulas, as above, one can see that the nucleolus is group monotonic for all games in the six
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essential cases, when the nucleolus is aggregate monotonic. Therefore, for all [n,n — 1],

nondegenerate games, the nucleolus is aggregate monotonic if and only if it is group monotonic.

IV. THEOREM: For any [n, n — 1], nondegenerate games (N, v), if ( N, v) is convex, then the
nucleolus is aggregate monotonic.

PROOF (by contrapostion): Assume the nucleolus is not aggregate monotonic. From a previously
proven theorem, there exists a three player coalition R that satisfies e(x, i) = e(x, i°) > e(x, j°),
e(x,j) forall i € R and j ¢ R where x is the nucleolus of (N, v). Without loss of generality, we
will denote the three player coalition as {1, 2, 3} for clarity. This implies e(x, 1) = e(x, 1°); e(x, 2)

= e(x, 2°); e(x, 3) = e(x, 3°). These equations can be rewritten as

vil)—x; = a;, — X3...—Xnp
V(2)—x2=a’2—x1—X3..'—Xn
v3) —x3 = a3 — X; —Xp— X4...— Xn,

or

X3 = (ag —ay) /2

Xy = (ag —ay) /2

Xg = (a9 —ag)/2
Because the excess coalition arrays are arranged in decreasing order, e(x, 3) > e(x, {4,..,n}).
By definitions of excess vectors and efficiency, e(x, {4,..,n}) = x; + x, + X3 — ag. Substituting
in the inequality for e(x, 3) and e(x, {4,.. n}), weobtain (a3 — a,)/2 > [(3a, — a;— a,
—ag) /2] — a. Simplifying, we obtain a; + a, + 2a; > 2a,. If the game is convex, then it
follows that a; + a3 < a; and a, + ag < a;. Summing these inequalities, we obtain a; +

ay + 2a3 < 2ay. Since we showed that a; + a, + 2a; > 2a,, it follows that the game is not

convex.
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V. THEOREM: For all [n,n — 1], nondegenerate games (N, v), if (N, v) is convex, then the
nucleolus is group monotone.

The proof for this theorem directly follows from the above theorems.

VI. EXAMPLES:
The previous theorems may not hold at a degenerate game. We exhibit two games that are degenerate
and convex. The nucleolus is aggregate monotone at the first and is not aggregate monotone at the

second.

A. Consider the [4, 3] games defined by ag = 4 + 4¢ and a, = a, = ag = a, = 2. For
all ¢ > —1/2, thenucleolusis (1 +¢, 1 +¢, 1 +¢, 1 4+¢). At ¢ =0, the game is convex,

degenerate, and the nucleolus is clearly aggregate monotonic.

B. Consider the [4, 3] games defined by aq, = 4 + 4¢, a; =a, —=az3 =2 and a, = 0.
For all ¢ € [-1/2,0], the nucleolusis (1 + 2¢, 1 + 2¢, 1 + 2¢, 1 — 2¢). Forall ¢ >0,
the nucleolusis (1 + €, 1+ €, 1 + €, 1 +€). At € = 0, the game is convex, degenerate, and

the nucleolus is clearly not aggregate monotonic.
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