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Abstract

Several objects are to be allocated among two or more players. Each player has a numerical valuation for each object and the numerical value for a set of objects is simply the sum of the values of the individual objects. One allocation is better than another allocation if each player values their objects in the former allocation at least as well as their objects in the later allocation, and at least one person values their objects in the former allocation strictly more than their objects in the later allocation. An allocation of the objects is efficient if there is no better allocation. This paper investigates the issue of finding the minimum number of efficient allocations if all the players have positive values for every object. 
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1. Introduction

1.1 The problem

             Consider an allocation problem of indivisible objects among n players. M= {1, 2,…, m} will denote the set of objects. And N = {1,2,..., n} will denote the set of players . Each player 
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  has a value 
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on object j such that
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, that is the valuation of the ith player for the jth object is positive.  To illustrate, consider three objects { house,car,boat} that are to be distributed to  two players {Bob,Ted} on the basis of the different valuations of the objects.

Example 1 
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	(1)House 
	(2)Car
	(3)Boat
	Total

	(1) Bob
	0.500
	0.400
	0.100
	1.000

	(2) Ted
	0.078
	0.399
	0.523
	1.000


          This example represents the object valuation 
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 for the players, each entry is a bid. For example 
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= 0.500 is how much player 1 values object 1.

Table (1)

Allocation (x)         Valuation  V (x)       Better allocation              Efficient ?
 [1, 1, 1]                            (1.000, 0)
[image: image7.wmf]                      
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 [2, 1, 1]                            (0.500, 0.078)                [1, 2, 1], [1, 1, 2], [1, 2, 2]                  No

 [1, 2, 1]                            (0.600, 0.399)                [1, 1, 2]                                               No

 [2, 2, 1]                            (0.100, 0.477)                [1, 1, 1], [2, 1, 2], [1, 2, 2]                  No

 [1, 1, 2]                             (0.900, 0.523)                                                                          Yes

 [2, 1, 2]                            (0.400, 0.601)                [1, 2, 2]                                               No

 [1, 2, 2]                             (0.500, 0.922)                                                                          Yes

 [2, 2, 2]                            (0, 1.000)                                                                                  Yes

1.2  Allocation

               An allocation is an assignment of objects to players. We will denote the allocation by a vector 
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] where 
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 is the player who receives object 
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. In example (1) above the notation  
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 is the allocation in which object 1 is given to player 2 and objects 2 and 3 are given to player 1. All possible eight allocations for the above example are listed in the first column of the table 1

1.3 Valuation

               The valuation of an allocation 
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 for player 
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 is the sum of player
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’s values for the objects he received. We will denote this by    
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. In example (1), 
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 = 0.078. All the eight valuations are listed in the second column of the table 1.

1.4 Better allocation

              An allocation  
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 is better than allocation 
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                In Table (1) the allocation 
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 All the better allocations are listed in the third column of table 1 

1.5 Efficiency

               An allocation  
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 is efficient if there is no other allocation 
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Example 2
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	House (1)
	Car(2)
	Boat(3)
	Total

	(1) Bob
	0.500
	0.400
	0.100
	1.000

	(2) Ted
	0.300
	0.600
	0.100
	1.000


This example has eight efficient allocations; [1, 1, 1], [1, 2, 1], [2, 2, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2].

Table (2)

Allocation (x)         Valuation  V (x)       Better allocation              Efficient ?
 [1, 1, 1]                            (1.000, 0)
[image: image54.wmf]                      
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 [2, 1, 1]                            (0.500, 0.300)                [1, 2, 1], [1, 2, 2]                              No

 [1, 2, 1]                            (0.600, 0.600)                                                                          Yes

 [2, 2, 1]                            (0.100, 0.900)                                                                          Yes

 [1, 1, 2]                            (0.900, 0.100)                                                                         Yes

 [2, 1, 2]                            (0.400, 0.400)                [1, 2, 1], [1, 2, 2]                                 No

 [1, 2, 2]                            (0.500, 0.700)                                                                         Yes

 [2, 2, 2]                            (0, 1.000)                                                                                 Yes

Theorem: In any 2X3 problem there are at least four efficient allocations.

Proof:

              In any 2x3 problem, some player is a highest bidder on two objects and the other person highest bidder on the third object. (Suppose not, and then one person is highest bidder on all three objects, making the sum of that person’s bids strictly greater than the sum of the other person.) Without loss of generality, let person 1 be a highest bidder on object 1 and 2, person 2 be a highest bidder on object 3.In the following four paragraph, we will exhibit four efficient allocation.

              The allocation 
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               In any 2x3 problem, some player is a highest bidder on two objects and the other person highest bidder on the third object. (Suppose not, and then one person is highest bidder on all three objects, making the sum of that person’s bids strictly greater than the sum of the other person.) Without loss of generality, let person 1 be a highest bidder on object 1, person 2 be a highest bidder on object 2 and 3.
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[image: image83.wmf]=

y



 EMBED Equation.3  [image: image84.wmf]]

2

,

2

,

1

[

 is efficient if there is no other allocation 
[image: image85.wmf]]

,

,

[

r

q

p

x

=

 is better than 
[image: image86.wmf]=

y

  
[image: image87.wmf]]

2

,

2

,

1

[

. So we need to show that there is no allocation 
[image: image88.wmf]]

,

,

[

r

q

p

x

=

 that satisfies  
[image: image89.wmf])

(

)

(

y

V

x

V

i

i

³

 for all players 
[image: image90.wmf]i

and
[image: image91.wmf])

(

)

(

y

V

x

V

k

k

>

for some player
[image: image92.wmf]k

. As we did before to show this assume by our assumption there is an allocation
[image: image93.wmf]]

,

,

[

r

q

p

x

=

, and find a contradiction. Hence 
[image: image94.wmf])

(

)

(

)

(

)

(

2

1

2

1

y

V

y

V

x

V

x

V

+

>

+

 . But by our original assumption 
[image: image95.wmf],

11

21

a

a

£

 
[image: image96.wmf],

12

22

a

a

³

 and  
[image: image97.wmf]13

23

a

a

³

, then 
[image: image98.wmf]23

22

11

13

12

21

a

a

a

a

a

a

+

+

£

+

+

, this implies that 
[image: image99.wmf])

(

)

(

)

(

)

(

2

1

2

1

y

V

y

V

x

V

x

V

+

<

+

 . But this contradicts our assumption that 
[image: image100.wmf])

(

)

(

y

V

x

V

i

i

³

 for all players 
[image: image101.wmf]i

and
[image: image102.wmf])

(

)

(

y

V

x

V

k

k

>

for some player
[image: image103.wmf]k

 So the allocation 
[image: image104.wmf]=

y



 EMBED Equation.3  [image: image105.wmf]]

2

,

2

,

1

[

 is an efficient allocation.

In any 2x3 problem, an allocation is efficient if one player gets everything and the other gets nothing. 

                The allocation 
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 gives player 1 three objects and any other allocation will give player 1 fewer than three objects and  makes him worse off. By contradiction the allocation 
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In any 2x3 problem, an allocation is efficient if one player gets everything and the other gets nothing. 
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 gives player 2 three objects and any other allocation will give player 1 fewer than three objects and makes him worse off. By contradiction the allocation 
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> with(stats):
> with(plots):
Warning, the name changecoords has been redefined
> cdata := [1.000, 0.500, 0.600, 0.100, 0.900, 0.400, 0.500, 0]:

vdata := [0, 0.078, 0.399, 0.477, 0.523, 0.601, 0.922, 1.000]:

points := [seq([cdata[i], vdata[i]],i=1..8)];

plot1 := plot(points,style=point,color=black,symbol=circle):

plot2 := plot((0.922-1)/(0.5-0)*(x-0) + 1, x=0..0.5):

plot3:= plot((0.922-0.523)/(0.5-0.9)*(x-0.5)+0.922,x=0.500..0.900):

plot4:= plot((0.523-0)/(0.9-1)*(x-1.0)+0,x=0.9..1):

display([plot1,plot2,plot3,plot4]);
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