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Consistency: An Axiomatic Classification of Allocation
Methods on TU Characteristic Function Form Games

Abstract: For several well-known functional allocation
methods, there exists an axiomatic description in which the
important property is consistency. Consistency stipulates
that given a subset of players T, an allocation method
returns the same allocation for each player in the reduced
game on T as it does on the large game. Thus the study of
consistency properties is simply a study of reduced games.

In general, a specific reduced game uniquely defines an
allocation method, given a few additional weak assumptions.
Thus it would seem that a classification of reduced games can
provide a classification of allocation methods. The
literature so far has only provided special cases of reduced
games. In this paper a general reduced game form is
postulated. A subclass of the postulated reduced games are
shown to classify a class of linear allocation methods (which
includes the Shapley Value). The subclass of reduced games
is then shown to be a convex combination of simple reduced
games whose associated allocation methods span the derived
class. An axiomatic characterization of the class of
weighted prenucleoli (including the prenucleolus and the

per capita prenucleolus) is also given using another subclass
of the postulated reduced games.

Definitions:
Denote a game in characteristic function form (or simply
game) by the ordered pair (N,v) where N=(1,...,n) denotes the

set of players (|N|=n) and v denotes the real valued function
V:2N--->R. Define a subgame to be the game on a subset of
players, ie. (S,v) for S&N. An allocation or pre-imputation
is a vector 0#x=(x1,...,xnﬁ?Rn satisfying $ xi=v(N)
(Efficiency or Pareto Optimality). iéN ——=

An allocation method &, or simply a solution, will denote a
relation identifying a game (N,v) with a subset of the set of
allocations for that game. Denote the image of & by ©(N,v).
There are a number of simple properties that can restrict the
set of solutions under consideration.

An allocation method ® is defined at the game (N,v) if (N,v)
is part of the domain of &.

(ETP) An allocation method satisfies the Equal Treatment
Property if ©(N,v)i=0(N,v)Jj when i,jéN,i#j, satisfy
6(sU{i})=0(s({j}) for all SC N\{i,Jj}.

(SYM) Let p(N)=[p(1l),...,p(n)] denote a permutation of the
players in N. Define the value function pv by pv[p(S) ]=v(S)
for all SC.N. An allocation method satisfies the Symmetry
Property if p(i) (N,pv)= i(N,v) for all permutations p.

(Ccov) A solution is defined to be proportionate if for a=0
and worth av defined by (av) (S)=av(S) for all SN, it
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follows that®© (N,av)=a (N,v). Given bi¢R and i¢N, define a
worth function u by u(S)=v(S)+bi for all i¢fSC N and u(S)=v(S)
for all i#/SCN. A solution concept is defined to be valu
separable if ©i(N,u)=6i(N,v)+bi and 6 (N,u)=09(N,v) for j#i.
An allocation method which is both proportionate and value
separable satisfies the Covariance Property (or the Relative
Invariance under Strategic Equivalence property), ie. for all
a=0 and b Rn, ©(N,u)=a®(N,v)+b where u is defined by
u(s)=av(s)+>_bi for all SCN.

ies

Remark: Note that an allocation method satisfying
several combinations of the above properties is already
completely defined on two player games. We have the
following well-known result:

Lemma 1: A solution on two player games@%{i,j},v) is
uniquely defined to be &i({i,Jj},Vv)=v({i})+1/2[v({i,J}-v({i}-
v({j})] if © satisfies any of the conditions I,II,III or IV
listed below;

I satisfies SYM and COV
II satisfies ETP and COV
IIT satisfies ETP and is value separable
v satisfies SYM and is value separable

The proof follows easily from the definitions. A solution
which evinces the above solution on two-player games will be
referred to as standard on two person games. (See Driessen,
(1990) and Hart & Mas-Colell, (1987))

In general, allocation methods fall into two categories. One
class of solution concepts yield a set of allocations for
each game. We will denote these solution concepts as Set-
theoretic solutions. This paper is not concerned with this
category of solution concepts. Allternatively, other
solution concepts yield a unique vector for each game. We
will denote these solution concepts as functional solutions.

Example 1 Equal allocation of joint value

The equal allocation of joint value (EAJV) first
allocates each individual their individual worth v(i), and
the amount remaining is divided equally among the members of
N. .

EAJVi=v(i)+1/n[v(N)-Z v(3)]
JEN

Example 2: Equal allocation of nonseparable value

The equal allocation of nonseperable value (EANV) first
allocates to each individual their separable value, ie. their



marginal worth to the grand coalition, and then the amount
remaining is divided equally among the members of N.
EANVi=si+1/n[v(N)- & sj] where sj=v(N)-v(N-{j})
JEN

B

Example 3: The Shapley Value
The Shapley value for individual i is the average of the
marginal values individual i brings to the set of players
over all possible orderings. (see Shapley, 1953)
SHi=s§. (Is]-1)t(n=|sS])! [V(SU{i}) - v(S)]
N

n!

Example 4: The weighted nucleolus and weighted pre-nucleolus

Given an allocation x, define the excess of a coalition
S (in (N,v)) by e(S,x,v):=|S|[V(S)-x(S)] where 0=w Rn and
w|S| is the |[S|th component; the excess is a measure of the
power of the complaint that S can raise about x. Let e(x,Vv)
be the vector of excesses e(S,x,v) S=0,N, ordered from
highest to lowest. The weighed prenucleolus is the
allocation which minimizes e(x,v) lexicographically. 1If
wi=1 for all i, then is the prenucleolus. If wi=1/i then
is the per capita prenucleolus. The weighted nucleolus
minimizes e(x,v) lexicographically on the set of imputations.
(see Schmeidler, 1969, and Grotte, 1970)

Introduction and Further Definitions:

The description of a game in essence consists of listing
all the coalitional values. Thus it is quite natural to
suppose that the description of an allocation method would be
encapsulated in the action of the solution on all reduced
games; ie. all the information of a game allocation is
contained in the possible reduced games. Consistency
requires that the solution returns the same allocation
coordinate on a reduced game as on the full game. Thus, the
definition of the reduced game determines the particular
functional allocation method which is consistent on that
reduced game. Adding sufficient basic properties to
guarantee uniqueness then axiomatically characterizes the
solution. The elemental nature of the consistency approach
allows the mathematician to begin to compare different
allocation methods quantitatively. There have been several
axiomatic characterizations of allocation methods involving
consistency in the literature. Sobolev (1975B) characterized
the prenucleolus using the consistency property developed by
Davis and Maschler (1965). This consistency property also
plays a role in Peleg's characterization of the prekernel and
the core. (Peleg, (1985)) The Shapley value can be



characterized by three different consistency properties (so
far) . (See Dreissen (1991)). The most useful for the
purposes of this paper is the consistency property developed
by Sobolev (1975A). More recently, Potts (1991) has shown
that the egalitarian value can be characterized by both Davis
& Maschler and Hart & Mas-Colell consistency (See Potts
(1991)).

Formally,

Given k, 1<k<n, a solution © is k-player consistent with
respect to the reduced game X (in other words, © is k-player
X-consistent) on a class G of games if

“

6 (N, v)= O(T,vT,@)
for all TCN s.t. |T|=k, and games (N,Vv)€G, where VvT,® is
the X reduced game of (N,v) on T with respect to ©. A
solution is X-consistent if it is k-player X-consistent for
all k, 1<k<n.

Given § (N,v)=x, the Davis & Maschler reduced game (T,VT,Xx) is
defined as follows
VT,X(¢)=O

vT,x(T)=x(T)
VT, x(S)=max{v(SUR) - x(R):RCN-T} for @4scT.

Given (N,v)=x, the Hart & Mas-Colell reduced game (T,VT,X)
is defined as follows ) )
vT,x(S)=v(S[/N\T) - > _ i(sUN\T,v) for all SCT.
ieN\T

Results:

" In order to motivate the introduction of the general reduced
game form, results pertaining to two specific solution
classes will be discussed initially. The first class of
solutions is the one originally delineated by Maltenfort
(1990) which consists of (in essence) symmetric linear
allocation methods. The second class of solutions is the
class of weighted prenucleoli. A general form including the
special cases will then be introduced.

A Class of Linear Allocation Methods

Consider the following reduced game, to be denoted the 1-
reduced game;
vT,x(T)=x(T)
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v x(s)-: Z oA 2 Lvsuny-wa))

vT, x(¢)=0 -0 n¢M\T
)=k

vT x(S)=D<|N\T|[V(S UN\T) - x(N\T)] + ...
+X|R| S [V(SUR) - X(R)] + ...

zczlv\“ + Xov(s),

<
whereX¢R|N\T| is a vector satisfying 0<Xi<1 for all i and
Sxi=1. 1In other words, the l-reduced game is a convex
combination of reduced games of the form _> [v(S{R) - x(R)]
where the sum runs over all coalitions REN\T of fixed size.
It is natural to wonder about the significance of these
reduced game terms.
Definition 1.1: Let the k-marginal of player i be defined to
be the average worth of coalitions of cardinality
k {1,2,...,n-1} containing i to the grand coalition, ie.

-\ R
si= v(N)-(ijSv(R), sum over all R%i, |IR|=k

5.2 V(N = (D22 v(R)

Then the Equal Allocation of k-marginal Value is the
allocation method which first allocates to each player her k-
marginal worth si, and the amount remaining is divided
equally among the players, ie.,

EAkVi= si + 1/n[Vv(N) -Z sj]
Remark 1.2: The EAkV formula can be equivalently written as
-1

EAkvl—( -)Zv(R) + 1/n[v(N) - k C;)g v(R) ]
|R|=k |R|=k
i€éR

Examples: Both the equal allocation of nonseparable value
(k=n-1) and the equal allocation of joint value (k=1) are
examples of EAkKV's

Theorem 1.3: The EAkKV is the unique allocation method which

is standard on two player games and which is consistent on

the following reduced game:

vT,x(T)=x(T)
_‘_(’

vT,x(S)= (;<

proof: we will use the notation vT(S)= VvT,x({S}) when
the meaning is clear.
existence -
The only EAKV defined on two player games is the EAJV
must have k<n). Simple substitution of the values yields the

vT,x(ﬁ)=0

=\

v(sYR) - x(R)], sum over all RCN-T, |R|=k-1



standard formula on two player games. Alternatively, the
proof could proceed from the point of marginals (EANV could
be the fundamental allocation method, but for clarity and
simpler formulae I will assume EAJV fund. However,
interpretation dictates EANV to be fundamental) The proof of
existence involves three assertions; 1. EAKV is defined to be
EAJV (resp EANV) on games for which k >= t, and thus there
are two cases to consider demonstration of consistency; 2.
k<t (EAKV reduced game applied to EAKV formula) and 3. k>t
(EAKV reduced game applied to EAJV formula). The proof would
then be a substitution of T for N and vT for v in the
corresponding formula and working out the simplification,
using vT(T)= x(T).

Given an arbitrary game (N,v) and a coalition T, |T|=t,
the value of EAkVi on the reduced game (T,VvT) is the
following:

EAkVi= VT (R)+

subsumed in EAJV (EANV resp.) two cases to consider.
Actually EAJV is basic ie. n=1 then simplex is v(S) (single
point, n-1 dim simplex)

uniqueness -

We actually show a slightly stronger statement, namely
that standard on two person games and 2-player EAKV-
consistency imply a unique solution.

Consider the coalition T={1,i}. Let be an allocation
method which is standard on two player games and EAKV-
consistent. Then we have the following equalities:

@i(N,v)=@i(T,vT)= vT(i)+ (1/2) (VT({1,i})- vT(1)- VvT(i))
= (1/2) (VT(1i)+ vT(i)- vT(1))
= (1/2)( i(T,vT)+ 1(T,vT)+ vT(i)- VvT(1))
=> BOi=01+ vr(i)- vT(1)
Substituting in the formula for vTpand simplifying the
expression yields

o
0 i= ©1+ (k)[v(iUR)- v(1UR)] %ng“ 1R)=[.
Note that the same argument applies to any i=2 to n,thus
generating n-1 linear conditions on . Applying efficiency,
and substituting the values for 2,..., n from above, we get

-\ =t
nO1+ (HDU&:%EV(R)]- (nj_l:-l) (&‘lcﬁV(R)]= v (N)
=> B1= (1/n)v(N)+ (n—r—l)/n(",;ﬁv(R)]- (r+1)/n( kﬁv(R)]

which is easily seen to be identical to the alternate form of
the solution given in Remark 1.2!



Corollary 1.3.1: The EAJV is the unique allocation method
which is standard on two player games and which is consistent
on the following reduced game:

vT,x(T)=x(T)

vT,x(S)=v(S) for all Sg;T

Corollary 1.3.2:(Moulin,1984) The EANV is the unique
allocation method which is standard on two player games and
which is consistent on the following reduced game:

vT,x(S)= v(Sk{N-T) - x(N-T) for all sC T
VT,X(¢)=O

Remark: The uniqueness proof for these two corollaries is an
easy exercise.

Aside: Three possible economic situations for the EAKV
allocation method set

The essential concept needed to understand the EAKV
solutions intuitively is the notion of relative utility of
coalitions of given size. Given a particular k<n, the EAKV
solution is the extreme notion that the coalitions of size k
are the only important coalitions relative to the grand
coalition. However, though extreme, there are plausible
economic situations where the EAKV solution may be a
reasonable allocation. For example, consider a factory with
N>>3 workers. The product being assembled requires teams of
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three workers. More than three workers lowers the
productivity of the team (too many cooks spoil the broth).
Thus the only important coalition size is coalitions of size
three. Note, however, that coalitions of other sizes have
nonzero values (thus making application of the Shapley value
questionable as coalitions of other sizes will be less likely
to form). Each worker has a certain amount of skill,
experience, and ability to work with his/her coworkers. Thus
there are varying values for various coalitions. The value
of the grand coalition to be divided among the workers is of
course the profit of the factory, ie. player i's assignment
is his/her salary.

In general, the raw EAKV allocation method seems to have
most application to socialist economic systems. However,
more complex allocation methods can be constructed from these
simple allocation methods. For example, Maltenfort (1990)
classified a set of linear allocation methods which satisfy a
weak form of the dummy player property. Formally, the set



can be characterized axiomatically by (efficiency,) symmetry,
linearity, and the inessential game property. is linear
if, for all a,b R,
aB(N,v) + bE(N,w) = ©(N,av) + &N,bw) = (N,av+bw)

where av and bw are the value functions defined by
(av) (S)=av(S) and (bw) (S)=bw(S) for all SCN. A game (N,V)
is inessential if, for all Sc N, v(S)= v(i), sum over i¢S.

has the inessential game property if & i(N,v)=v(i) for all
inessential games (N,V).

Lemma 1.4.1: Every element of the Maltenfort set can be
uniquely expressed as a convex combination of EAkV's

proof: EAKV's satisfy the four axioms. The only nontrivial
axiom to check is inessential game proprerty. Proof for that
axiom is straightforward (Simple) Conversely, Maltenfort
solution => 1lin comb. EAkKV's Easily shown by comparing the
two formulae.

Corollary 1.4.1: The Shapley value is the average of the
EAKV's

proof: It is an easy exercise to show that
SHi=(n-1)-15 EAkVi, sum over k=1 to n-1

New interpretation of the Shapley value (average k-marginal
value)

Corollary 1.4.1 highlights an interesting, possibly new
interpretation of the Shapley value, ie. the average k-
marginal value of player i. There is some basis for this
interpretation in Shapley's own thoughts about the Shapley
value. According to Harsanyi (1977, p. 226), Shapley
originally conceived of the Shapley value as the average
payoff prospect for player i, ie, the average solution. 1In
other words, if the game were played many times, the
negotiated solutions would likely cluster about the Shapley
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value. Thus, the Shapley value is not necessarily a viable
solution in its' own right, but simply a statistical measure
of classical game outcomes. This analysis suggests an
interpretation for the general Maltenfort solution as the
weighted average payoff prospect, ie. the average solution
after accounting for the importance of the size of the
coalition. In fact, the Shapley value is calculated over an
excess space for which the excesses are normalized, ie. a
coalition of size s has an excess weighted by %$#$€@. Thus,
the Shapley value is more closely aligned with the per capita
nucleolus than with the nucleolus (calculated over the same
excess space)



The interpretation of the Shapley value reduced game is
motivated by a reexamining of the interpretation of the
Shapley Value. Shpley originally thought of his value as the
average payoff prospect given a large number of iterations of
the bargaining process.

Theorem 1.4: Any element of the Maltenfort set is uniquely
axiomatically characterized by symmetry, covariance and 1-
consistency for somexéRn. Further, every element of the
Maltenfort set can be so characterized.

existence -

The problem with following the existence method for
Corollaries 1.2.1 and 1.2.2 is the following: When applying
the consistency property to a general combination of reduced
games, all elements of the reduced game must be applied to
all parts of the reduced game, eg the EAJV reduced game is
applied to EANV and vice versa. It does not appear that
these pieces cancel out, or create something comprehensible.
(However, see proof of EAKV consistency for possible
solution)

uniqueness as before 2player l-consistency

The uniqueness proof is, mutatis mutandis, identical
to the proof for the uniqueness of the EAkV's. (Given N
players, need convex comb of first n-1 EAKV's)

Corollary 1.4.2:(Sobolev,1973 - see Dreissen, 1990) The
Shapley value is the unique allocation method satisfying
symmetry, covariance, and consistency with respect to the
following reduced game (given for T=N\i):

VN\i,x(S)= (n—1)—1|s|[v(sU{i}) - xi] + (n-1)-1(n-|S|-1)v(S)

Remark: Note that the n-1 case of the reduced game uniquely
determines the value of the reduced game for all T < n-1

The Weighted Prenucleolus

Digression: Though much work has been done with the
nucleolus as defined by Schmeidler (1969) and its extension
to the space of all games, the prenucleolus, relatively
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little work has been done with related allocation methods.
For example, the per capita nucleolus, as defined by Grotte
(1970), and its generalization to the space of all games, the
per capita prenucleolus, remain relatively unused. This is
unfortunate as these allocation methods can have several
interesting properties, for example, the per capita (pre)-



nucleolus is both aggregate monotone and group rational
(Housman, 1990).

Definine the following reduced game, to be denoted the w
reduced game;

vT,x(T)=x(T)

vT,x(¢3=0

vT,x(S)= x(S) + max{(w|sS|)-1[e(sUR,x,v)]} for all sc T
REN-T

where e(S,x,v)=w|S|[V(S) - x(S)] is the excess of coalition S

in game (N,V).

Lemma 2.1.1: e(S,x,VT,X)= max{e(S(/R,x,v)
RCN-T
proof:e(S,x,vT,x) = w|S|[VT,x(S) - x(S)]

w|S|[x(S) + max{(w|S|-1)([e(SLR,x,V)]} -x(S)

RCN-T

= w|S|[(w|S|-1max{e(SUR,x,V)}]
RcN-T

= max{e(S(UR,x,V)}

RCN-T

Theorem 2.1: The weighted (pre)nucleolus is consistent with
respect to the w reduced game.

proof : Let x be the weighted (pre)nucleolus.
Let Cx = {SCT : e(S,x,vT) >«}.
Consider Cx = {SCN : e(S,x,V) >«}. Since x is the weighted
(pre)nucleolus, G4 is balanced with respect to fvwhen
nonempty by Kohlberg's criterion (ie. property II. See
(Kohlberg,1970) or (Grotte,1970)). This implies that
QT = {§/WT : S€G,} is balanced on T with balancing weights
S(8) =55(8) , seg,, S T=R. Thus, it only need be shown
hat Cx = gKnT. But this is obvious by Lemma 2.1.1, as
follows;
QcC, <=> e(Q,%,VT) >« <=> e(QUR,x,v) > A for some RC N-T
<=> Qt)Regx‘for some RC N-T
<=> Q € G /\T!

Corollary 2.1.1: The per capita prenucleolus is consistent
with respect to the following reduced game:

vT,x(T)=x(T)



[ O
VT,x(g6=0.

VvT,x(S)= x(S) + max{|S|-1[e(SUR,x,v)]}
RCN-T

The General Reduced Game Form and some Econonic
Interpretations
The General Reduced Game Form:

VT, %(T)= x(T)

vT,x(@)= 0

VT,x(S)= x(S) + {e(S R,x,v): REN-T} , SCT, where
e(SUR,x,v)=w|s UR|[v(SUR) - x(s(UR)].

In words, an allocation's reduced game is determined by two
things; the excess space (the basis chosen), and the function
which takes the excess space as its argument. The excess
space is determined by specifying the relative utility value

of coalitions of a particular weight. Actually is Rn,
different weights correspond to different choice of basis.
canonical basis is simple excesses.

The value of an arbitrary subcoalition S is simply the
allocation that the players in S receive in the large game
plus the coalition's complaint with the allocation.
(Complaint is a measure of how likely the coalition will
prefer not to join the large game) Note that a complaint
implies that the complainers find something unfair about the
allocation. Thus the function is determined by the
particular property of fairness to which the players of the
game are appealing. (The distinctive notion of fairness
differentiating one allocation method from others is
encapsulated in the choice of .) For example, the
(pre)nucleolus reduced game function is the maximization
function (maximum excess to which the players can lay claim,
as is obvious by Theorem 2.1), while the Shapley value
reduced game function is the summation function (linear
combination of excesses corresponding to the . general form
-159, allocation plus "excess",show special cases satisfy,
Note that the weights of the excesses must be stipulated in
order to specify the allocation method.

Remark: The w reduced game has an interesting economic
interpretation. A reduced game can be thought of as a test
of the "fairness" of an allocation x by the players in the
coalition T. When playing a reduced game, we assume that the
players not in T are satisfied with the allocation x. The
reduced game for an arbitrarily subcoalition S T is the
assignment of x(S) plus a measure of the complaint that is
converted to size |S| utility.



Since the complaints are weighted according to the size of S,
the complaint must be converted to the utility of the
subcoalition S.

w|S| and 1i's are the same thing. Allocation method
specifies weights. Restrictions on to be convex for sol'n.
Maximization implies that proportional invariance (all
weights equivalent to a convex combination. equivalence
relation if produce same maximization. Same max if
proportional weights. (Fix game)) ie similar simplexes are
equivalent? general case? w|S| and measure relative
utility of coalition of size |[S|.

Questions:

The most pressing item to be solved is the following
Hypothesis : The weighted prenucleolus is uniquely defined by
symmetry, covariance and w-consistency.

The following Corollaries will then be immediate.

Corollary: (Sobolev) The (per capita) prenucleolus is the
unique allocation method satisfying symmetry, covariance, and
w-consistency.

proof let w|S|=1 (w|S|=1/i per capita case) for all S

Reduced axioms need for w-prenuc characterization?
(standard?)

Though I have assumed symmetry and covariance throughout this
paper, it is by no means clear that these are the weakest
axioms needed. Perhaps weaker properties, involving the
standard solution on two person games, could also
characterize the allocation method classes presented in this
paper.

hart & mas-colell? results with the egalitarian value

as well as use of x vs. (Thomson) .Discuss two differences
One way gives EANV(My first result, ind dis by Moulin) but
other way not help (Max is Sh reduced set of games)Then it
suggests that the h&MC approach is a different concept
entirely. Equivalent method of defining consistency seems to
be possible? Or only possible for reduced set of allocation
methods?

Note that the reduced games presented in this paper are not
dependant on an allocation method. The reduced game can be
calculated for any allocation. This approach can be
generalized to classify allocations in general. However, the
H&MC approach specifically requires an allocation method to
calculate the reduced game (thus a more complicated and
possibly more specialized concept than heretofore discussed)

other allocation methods? eg,tau value? (PAJV?)

The question naturally arises whether other allocation
method reduced games fit this general form. Though this
question is valid for set-theoretic allocation methods, the
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axiomatic descriptions involving consistency of these
solution concepts have involved only the Davis and Maschler
reduced game, which has already been demonstrated to be of
the general form. The function in the general reduced game
need only be replaced by a relation to achieve full
generality, thus incorporating all reduced game descriptions
in the literature not involving H&MC consistency. (See
below) However, one functional allocation method which may
shed new light is the Tau value. I fee that it would be
worthwhile to explore the connection between the Tau value
and the Proportional Allocation of Joint Value and it's
generalizations. I have a hunch that the Tau value reduced
game is some function of generalized excesses which generate
the Poportional Allocations.

query: red game is 1 red game, i=1/n for all i. Sh to nuc.
A functional allocation method's reduced game is a finite
valued function on the n-1 dimensional simplex of a chosen
basis of weighted excesses. Proof for Shapley value
generalization is trivial. Proof for weighted nucleolus:
Initially power set dimensional, n-1 dimensional implied by
symmetry, proportionality of weights implied by covariance
(use normalized weights or define to be noormalized.
Multiplication by inverse sum of weights is irrelevant by
proportionality. Addition of x(S) irrelevant by value
separability.) implies convexity which implies simplexity.
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