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Introduction
Games in partition function form differ from those in coalition function
form in that the worth assigned to each coalition depends on how the rest of
the players collude. Although little is known about the "reasonableness" of
values for coalition function form games, natural extensions of the Shapley
value and the nucleolus are considered for PFF games. In my research various
concepts of reasonable outcomes are defined for these games based on those
defined by Milnor for coalition function form games. Also an allocation
method analogous to the nucleolus is sought for PFF games.
Background Information
We begin with a set of players N={1,2,....n} and consider all coalitions

SCN. A game W in partition function form assigns a real value, or worth, to
each subgroup S depending on the partition to which S may belong. To define
W formally, we first introduce the following sets:
- The set of possible coalitions,

CL={SCN:S=}
- The set of possible partitions,

PT = {P: P is a partition of N}

{S1,S2, ... ,Sk} is a partition of N iff:

- J= Si N, foreachi=1,..,k.

- VieN, 3k such that i€ Sk.

- SiNSj=T Vizj.
- The set of embedded coalitions,

ECL = {(S;P).S EP € PT}



Thus, a partition function form game on N is any WE RECL where W(S;P) is

the amount that S would receive if partition P formed.

We denote an allocation vector for the game W by x(W), or simply x
whenever W is understood, and we say that x(S) is the payoff corresponding to
SCN. In this paper, we consider only x in E, the set of all efficient
outcomes. Formally, we require that

xEE = {x: N x00) = W(N;N)}.
Two well-known allocation methods for coalition function form games ( games
which may be considered PFF games satisfying W(S;P)=W(S) for all
(S;P) €ECL) are the Shapley value and the nucleolus. We shall focus on the
study of the nucleolus, which is defined to be the value that minimizes the
vector of "complaints" in the lexicographic sense, and extend its meaning for
PFF games.

First, we say that a vector x is smaller than a vector y in the

lexicographic sense, and write x<,,. v, if any one of the foIlowing holds:
(a) x=y, or
(b) in the first component they differ xj <yj or
(c) there is no such i when x has less components than y.
For example, the following vectors are arranged in descending lexicographic
order:
[1,-3], I1, -3, -3], [-1, -3], [-1, -3], [-3, -3].
We define the vector of coalitional excesses with respect to x and P to be,
e(x,P)=( W(S;P)-x(S): SE€P )
where all its components are arranged in descending order. (If we consider
W(S;P) as the potential value for S in a given partition P, we can also refer to
e(x,P) as coalitional "complaints.")

Now, we consider the vector of embedded complaints with respect to P,



E(x)=[ e(x,P): PEPT ]
where all its components are arranged in descending lexicographic order, and

which we wish to minimize so that the maximum complaint is as small as

possible. So, define u to be the allocation such that

E(u) = lexicographic min[E(x): x EE]
Example 1.
A three-player game with N={i,j,k}:
For simplicity, we make use of abusive notation and ignore brackets and
commas when listing the members of a coalition S, and also ignore brackets
when listing the coalitions of a partition P of N.

We begin with the following PFF game.

S P v(S;P)
ijk ijk 48
ij ij, k 24
ik ik, j 18
ik ik, i 6
i i, k 12
i i, jk 0
j il & 6
j j, ik 0
k K i j 9
k K, ij 0

Consider the allocation x(v) = (19, 13, 16). We have the following coalitional

complaints:

P e(x,P)

ij, k (-8, -16)
ik, j (-13,-17)
jk, i (-19, -23)
i, k §i, -7}

So the vector of embedded complaints - in decreasing lexicographic order - is

Ex) =1 (-7,-7,-7), (-8,-16}), (-13,-17}, (-19,-23) ].
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Can we do better? That is, can we find another allocation which improves any
of the above complaints? Suppose yfzxis such an allocation. Since -7 is the
largest complaint, then any complaint with respect to y must be at most -7. In
particular we must require:

12-y(@)=s-7T <« yi)=19

(*) 6-ype=1 = WH=213
9-yk)<s -7 <« yk) =16

These are the complaints when P={i, j, k}. But since y must be efficient, we
must have that equality holds in (*). Thus,x=y = u.

The u- value is not an extension of the nucleolus, however. To show
this, we need only consider the following example.
Example 2.

A three-player game with N={ij,k}.

S P v(S;P)
ijk ijk 16
ij ij, k 12
ik iK, j 8
ik ik, i 4
i i, k 0
i i, jk 0
j i, i, k 0
j j, ik 0
k K i j 0
K K, ij 0

Notice that v(S;P)=v(S) so that this is a game in coalition function form whose
nucleolus is v(v)=(9, 5, 2). The vector of embedded complaints with respect to
v is:
ij k k j i ik j jk i
E(viel -2,-2), {-2,-5,9), £3,-5);, (-3,-9) ]
Can we do better? Suppose xé&= is better in the sense that E(x)<E(v). Since -2

is the largest complaint, we need:



- x(k) = 2 s CF

12 — x(i) —x(j) = -2 } x(i)+ x(j) =14

<=
Efficiency forces (*) to hold as equalities. That is, x(i) + x(j) =14 and x(k) =2.
Notice that regardless of the values that x(i) and x(j) may take on, the first

coalitional complaint above will not change. We need every other complaint

to be less than or equal to -2. That is we need the following:

x(@) =2

x(H=2

8- x(i)-x(k) < -2 4 - x(j) - x(k) < -2
< x(i)+2=10 < x(j)+2=6

< x(i) =8 < x(j)=4

Thus 8 < x(i) =10 and 4 < x(j) < 6. We cannot have x(j)=4 for that gives x =

(10, 4, 2) and we would be worse off as indicated by
E(x)=[ (-2,-2), (-2, -4,-10), (-2,-10), (-4,-4) ].
If x(j)=35, we would have x =v. Now suppose x(j)=5+¢ where O<e=<l, so
thatx=(9-¢, 5+ ¢, 2). This gives,
E(x)=[ (-2,-2), (-2,-5-¢,-9+¢), (-3+¢,-5-¢), (-3-¢,-9+¢) ]
and E(x) < E(v). Notice that the best we can do now is let ¢ =1 so that u= (8, 6,
2), and we have u = v.

A computation method for the u -value is not yet known, or how much it
might differ from the nucleolus in case the PFF game is actually a coalition
function form game. In example 2, the wu-value was not very different from
v in the sense that the corresponding payoffs to each player do not differ by
more than one unit. However a more significant difference might occur for
games with a large number of players. Also, it is not clear that the natural

extension of the nucleolus, defined to be the allocation v so that

E(v) = min[E(x) : x€E ] = min [{v(S)-x(S): SEPEPT): xEE],



would yield more desirable results. We do know about the u-value that it is

not always "reasonable" and that it satisfies the Equal Treatment Property
(ETP). We shall explain reasonableness later and show the following result:
Theorem 1I: In a PFF game v, if players i and j are symmetric, then
p(@) = p(j).
Definition: Two players i and j are symmetric in a game v if

v(su {i}) =v(su{j}) vscn\{ij}.
Theorem I says that the u-value satisfies the equal treatment property for it

assigns the same payoff to players that have the same effect on the worth
function.

Proof I:

Let e, ,(S) denote the componet in the vector e(x,P) given by v(S;P) - x(S).
This is the complaint of coalition S in the vector of coalitional complaints with
respect to x and a given partition P> §.

Suppose that the p-value does not satisfy ETP and let u(i) = u(j) +2¢ (&> 0).

Now let yEE be another allocation such that y(i) = y(j) =73 u(ij) = u(j)+ €.

owd 400 = pulle) Lraalbed i3}
We show that E(y) <, E(u).

First, consider the possible "types" of partitions of N that we have:
(i) P,: one in which both i and j belong to the same set S of some partition.
(ii) Pg: the partition of "singletons" in which every player works separately.
(iii) {P,, P }: partitions that come in "pairs," where P, is a partition for
which i and j belong to two distinct sets respectively, and P, is obtained
from P, by permuting players i and j. More formally,
P ={su{ih Tu{jljue
B, ={su{j}. Tu{itjug
where Q is some partition of N\ (SUT U{j, j}). Wesay that {P,, P, }isa

pair of symmetric partitions with respect to i and j.



Notice that for each { P,, P,} of type (iii) we have that, since y(i)=y(j), then
ey, P) =ely, B,).
Now suppose that the pair {P,, P,} gives the largest vector of coalitional
complaints e(y, P,) over all pairs of type (iii). Then E(y) may take the form:

(a) Ky)= ( ven BB BRE Y vy e(y,Ps),h. ol ) or

(b) Ey)=( .., e0P)...,eyP)" enP,) ...).
Notice that since u(ij) = y(ij) then for any P, of type (i) we get:

e(u,P,) = e(3,P,).

Thus, in our comparison of E(u) and E(y), we may ignore all vectors of

coalitional complaints of the form e(u,P,) and e(y,P,) for they will yield no

difference.
Assume that E(y) is of the form in (a). We can suppose without loss of

generality that:
-in e(y, P) we have e p(SUi)ze , (T'Uj) and that

-in e(y, P,) we have e,nSUpze ,(TUD.

Note that VR €Q, e, n(R)=¢,(R)=e ,(R) =e, . (R).
Now use y(i) = y(j) = u(j)+ ¢ and y@) = y(j) = u(i)- ¢ to compute:

eu,P'l(S Ui)=e,,(SUi)-¢
e,p,TUj=e ,(TUj)+e

€, p, SU))= e, p SU)pH+e
e,r,(TUD) =e,, (TUi)-¢
Then,

e(y.P,) = (e, p (SUI),....e, 5 (TU j),...) =

e(y,Py) = (e, p (SU ).oe, p (TUI),...)

and using the above equations, we get



(. P) =y p (SUD .o p (TU j),..) = (., (SUD = £y o (TU ) +€,...)

and

e, P,) = (r €y p, (SU sy, TUD,.) = (e, (SU )+ &,y (TUD) - e,...)

Notice that e(y,P,) =e(y,P,) <,, e(u, P,). *)
So, given a fixed partition P, whose coalitional complaints are the largest

(over all partitions of type (iii)), we get that we are worse off with respect to u

as compared with y.
We now compare e(y,P,) and e(u,P,).
Since u(i)=y(@)+¢& and u(j)=y(j)-¢ we have
e(y.P) =(...e,p. (). "€, 5 (D,...)

e(,P,) = (..t () + €, 5 (1) - €,...)
Notice that e, , (k) =e,, (k) VkEN\{ j}, and also

eur)<e,n() =€, () <e,pn () (**)
Again, we are worse off with respect to u as compared with y. Thus, E(y) <
E(u) which contradicts the definition of u.

Similarly, for E(y) of the form (b), (*) and (**) imply that E(y) < E(u ), and

Theorem I is established.




Reasonableness and PFF Games
We want to consider only a limited set of outcomes for PFF games; in
particular, we wish to define "reasonable" classes of allocations for these
games in the sense described by Milnor [1952]. Although little is known about
Milnor's classes of reasonable outcomes for coalition function form games, we
formulate parallel definitions for PFF games and study them in detail.
- The set of all possible efficient outcomes:
E-{xeR:3 )= uN:2)
- Class B of outcomes that do not exceed the maximum individual marginal
contribution. First, we define the marginal contribution of player i to the
embedded coalition (S;P) as follows:
M,(S;P) = v(S;P) - WS \{i}; Pli, R])
where P[j,R] is the partition obtained from P by moving i from S to some
other, possibly empty, set R of P. That is,
Pli,R1 = P\{R S}U{S\{}, RU{}}, REP\{S}U{T}.

Notice that if S does not contain i, then M,(S;P)=0.
And so,
B={x EE: x() s max(M,(S; P) : (;P) EECL): Vi EN b

- Class D of outcomes that assign reasonable amounts to every coalition S of N.
We say that an amouﬁt 0 is reasonable for coalition S if it is not
unreasonable. On the other hand, we say that é is unreasonable if N\S can
somehow prevent S from getting 6. Formally, we require the following:
(1) APEPT(S) ={PEPT: SEP} st. v(S;P)<d and
(2) IxEE st

(i) x(R)=v(R,P) VS=REP

(i) *()> max [VSUT;0)-6] V@=TCN\S

T)



Condition (1) above says that N\S must "partition" themselves so that S gets less
than the 0 it demands. Condition (2) says that this partition must be a "stable"
one by requiring that N\S find an efficient allocation x so that: (i) the payoff
to each member (coalition) of the partition in (1) be "feasible," and (ii) S be
unable to disrupt the partition by causing defections to occur. This is possible
if there is no incentive for any set of N\S to work together with S knowing S
will keep 6.
And so, we define:

D= {x €E: x(S) is not unreasonable for any § C N}
We shall focus our attention to class D.
Example 3.
Given any PFF game (N,v), we wish to know the reasonable payoffs that can be

awarded to each coalition § C N. Reconsider the game in Example 1:

S P v(S;P)
ijk ijk 48
ij ij, k 24
ik iK, j 18
ik ik, i 6
i i j, k 12
i i, jk 0
j i, i, k 6
j j, ik 0
k K i j 9
K K, ij 0

Unreasonable 6 for § ={i}:

We assume 6 >0 and take P={i, jki.

Notation: we write v(S; P\{S}) instead of v(S; P).
We need x EE such that

(i) x(jk) =< v(jk;P) < x(jk) =<6

and



i)  x(k) > v(ik:j)- 6 x(k) > 18 -6
x(jik) > v(ijk; 2) - 8 | | x(ik) > 48- 6

X() > W =0 ) x(j) > 248
} =

x(jk) > 42 - 26
{x(jk)>48—6

In order to have such x, we need to have

6> 4220 5> 18
sudb-51 "~ s

And so, unreasonable payoffs for player i are any 4 > 42.
Similarly we can determine that unreasonable é for player j are é > 30 and

unreasonable 6 for player k are 6 >24.

Unreasonable § for § = {ij}:

Assume 0 > 24 and take P={ij, ki.

We need x EE such that:

(i) x(k) = v(k;ij) < x(k)=<O0

(ii) x(k) > v(ijk;B) - o < x(k)>48-0

So we need 0 > 48- 4, and any 6 > 48 is unreasonable for {ij}.

Similarly, we get that unreasonable é for {ik} are 6 > 48 , and unreasonable 6

for {jk} are also 6 >48.

Notice that the u-value for this game, u=(19, 13, 16), gives reasonable payoffs
to each coalition S C N so thatthe D set for (N,v) is nonempty.

However, the u-value is not always reasonable. Consider the following game:
Example 4.

A three player game with N={i, j, k} and worth function given by:

S P v(S;P)
ijk ijk 3
ij ij, k 2
ik iK, j 2
ik ik, i 2
i i j, k 2
i i, jk 0

=~ e



S P v(S;P)

j j, i, k 0
j j, ik 0
k K, i, j 0
k K, ij 0

Here, u=(1.75, 0.75, 0.75), but we get that unreasonable é for any singleton are
6 > 1, and unreasonable é for any pair are é > 3. So, for instance, u (i), u (ij),

and u (ik) are unreasonable payoffs; thus u ¢B. Notice, however that D is

nonempty for the allocation x=(1, 1, 1) is in it.

A natural question to ask is when, or for what games, is D is nonempty.
In the case of coalition function form games, not much is known about the
classes of reasonable outcomes defined by Milnor. In particular, it has not
been determined if, or when, the analogous class D of reasonable outcomes is
nonempty. In attempting to answer this question for class D, we restrict
ourselves to symmetric games in PFF.
Definition: A PFF game is symmetric if all the players are symmetric; ie, if
permuting the players in any ECL does not change the worth function.
Consider the following game.

Example 5.

A symmetric game with N={i, j, k}.

S P v(S;P)
ijk ijk 4
ij ij, k 3
i i, j, k 0
i i, jk 2

We can compute the unreasonable values for each coalition and get that 6 >4
is unreasonable for any one player {i}, and that 6 > 2 is unreasonable for any

pair {ij}. Since all players are symmetric, if 6 > 2 is unreasonable for a pair



{ij}, then 6 > 1 is unreasonable for each player {i}. But this implies that no
efficient allocation will give reasonable payoffs to every coalition of N, and
thus D is empty for this game.

Why did this happen? We take a closer look at the game above as well as
the definition of D. Recall that condition (2i) says that the partition P
chosen in (1) is not to be disrupted by S. In our game, when S={i}, we have
P={i, j, k}. But notice that, instead of i persuading either j or k to work with
him, and causing "defections" to occur, it is more profitable for i to convince j
and k to work together. ThiS is not the kind of "disruption" of P that is
considered in (2i). Also, notice that there is no incentive for certain coalitions
to form, for some players can do better on their own. For instance, the grand
coalition N is unlikely to form since the partition P={i, jk} is more profitable.
Consider another example.
Example 6.

A symmetric game with N={i, j, ki.

S P v(S;P)
ijk ijk 9
ij ij, k 5
i ik 0
i i, jk 4

Here we get that 6 > 9 is unreasonable for any singleton {i}, and that 6 > 5 is
unreasonable for any pair {ij}. Since the game is symmetric, having é > 5
unreasonable for a pair {ij} implies that 6 > is unreasonable for any
singleton. Thus, again D is empty. Examining this game as we did before, we
notice that, although there is never a disincentive for coalitions to form,
condition (2i) in the definition of D does not "seem" to apply.

We now formalize the properties we saw in the two previous games.

- )L}..



Definition: A PFF game v is superadditive if, given any fixed partition P
containing distinct sets S and S', we have
v(§;P)+v(S";P)<w(SUS";0)
where Q is the partition obtained from P by joining S and S'; i.e.
Q= P\{S,SﬁU{SU S}
We say that in a superadditive game there is always an incentive for coalitions

to form.

Definition: Partition Q is a refinement of P if VREQ, ISEP st. RCS.
Definition: A PFF game v is partition monotonic if, whenever P,Q € PT(S)
for some § C N, and Q is a refinement of P, we have v(S;0) = v(S; P).
Roughly speaking, partition monotonicity says that coalition S will benefit
when theré is less collaboration in N\S.
We can now show that these two conditions are sufficient for symmetric games
to have D nonempty.
Theorem II: If a PFF game v is symmetric, superadditive, and partition
monotonic, then D is nonempty.
Proof 1II:
Let {i €S} denote the partition of N in which all the members of S work
individually, and all the members of N\S work together. Let n and s denote the
cardinality of N and S respectively. We make the following observations:
- Superadditivity and symmetry give that v(i; {j EN}) < 2v(N;N) Vi EN.
- Since v is symmetric, an allocation that satisfies ETP seems appropriate. So
we wish to show that % EE s.t. #(i) = 2W(N;N) is contained in D; i.e. that %(S)
is reasonable for all § C N. If not, then for some § C N, the following hold:
1. AP €PT(S) st. v(S;P) < x(S) = <v(N;N).
2. Ix EE satisfying:

(i) x(R)=sv(R,P) VS= REP and

i
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(i) x(T)> max[W(SUT;Q)-x(S): QEPT(SUT)] VO=TCN\S.
Notice that the reasonableness of x(N) is trivial since (1) is violated. Also,
since v is partition monotonic, we have that P = {S, N\S} satisfies (1) for any
S C N. This is the partition that assigns S the minimum possible amount, and
if there exists another P €PT(S) which assigns S the minimum possible
amount, we may still use P because:

(a) (2i) is automatically satisfied since

x(R) = v(R;P') YREP = x(N\Ss= VWR,P')<v(N\S;P)

s<Rer
(The last inequality holds by superadditivity.)

(b) The T € N\ § considered in (2ii) do not depend on which partition is
chosen.

Furthermore, for each TC N\ S we know which Q €EPT(S UT) maximizes the

right hand side in (2ii). Itis Q= {i EN\(SUT)}.

Notice also that in (2) we can use x €E such that x(j)=--v(N\S; {5, N\ §)
VjEN\ S (we are no longer considering S=N), and we would have equality
hold in (2i). Suppose the actual x €E gives x(j)>==v(N\S;{S, N\S}) for
some jEN\ S, sothat x(k) < ==vWN\ S; {S, N\ S} for some k EN\S. Then we
would have in (2ii) that x(j)> w(SU{} { EN\(SUT)} -<v(N;N) holds, but
since v(SU{} FEN\SUD)Y=vSU: { EN\(SUT)}), we have that
x(j) = x(k) > v(SU{}; H EN\ (S UT)}) -2v(N;N) also holds, and so the x €E we
chose above still works. We summarize our observations:
If %(S) is unreasonable for some § C N, then
1'. P={S, N\S} satisfies v(S; {S, N\ S§}) < 2v(N;N).
2'. AxEE st Vi EN\S x(j) =-=v(N\S; {S, N\S}) satisfying:

(i)' x(N\S)=v(N\S;{S, N\S}), and V=T CN\S, t=ITl

(ii)" x(T)=-Ev(N\ S;{S, N\ S})>w(SUT,; {j EN\(SU T)})—fv(N;N),

- b=



Notice that, in particular, when T = N\S we get in (2ii)"
X(N\S)=v(N\S§;{S, N\S§})>v(N;N)-2v(N;N) = =2v(N;N);
thatis, (*) v(N\S;{S, N\S}>=2v(N;N).
Case 1:
Choose T € N\ § such that ITl = t = n-2s > 0. Then we have that in (2ii)' above
ISUT|=s+t=s+n-2s=n-s,and
| {ieN\(SUD}|=n-(n-5)=s.
So, by symmetry v(SUT;, {f EN\S}H) =v(N\ S, {iEj‘}) and (2ii)' can be
written:
X(T)>VUN\S; {iESH-2v(N;N)=v(N\ §; {S, N\ §}) - Zv(N;N).
(The last inequality holds by partition monotonicity.) Equivalently,
V(N\ S;{S, N\ SH>wN\S; {S, N\ S} —£w(N;N)
@ JVNN) > 325 -2 (N S5 {5, N\ S
< Zy(N;N)>-=wN\S; {5, N\S}H
< Zy(N;N)>w(N\S; {S, N\ S}

which contradicts (*) above.
Case 2:
Suppose that n-2s<(0. Then choose T such that (n-s) | (s+t). Notice that this can
be done because:

*n-s <s<n = ns<s+t=<sn fort=1,2,...,n-s

*ns<n = Ik,r€Z st. n=k(n-s)+r with Osr<n-s

¢ letting t = n-r-s = k(n-s) - s so that t+s = k(n-s), we get

1< t = n-s-r < n-s, which is always possible.
With T such tha?g t = k(n-s), and by superadditivity, we get
i viSUT; ENNSUDY)=zkv(N\S; Q)

where (@ is a partition consisting of k sets of size (n-s) each, and n-(s+t)

players working individually. So (2ii)' above can be written:

e



x(T) >\:V(N\S; Q) - zN;N)
Notice that Q is a refinement of {S, N\S}, and so by partition monotonicity we
have:
LV(N\S; Q)2 75v(N\S; {S, N\S}H)
So (2ii)' now becomes
Ly(N\ S;Q)>kv(N\S; Q)-2v(N;N)
e FHEVN\S; Q) > Bv(N\S; Q) -(N;N)

< Zy(N;N)> = _-L[yN\S; Q]

< Zy(N;N)>-5v(N\S; Q)

< Ly(N;N)>-EwN\S; Q)

= ZZy(N;N)>v(N\S; Q)
which again contradicts (*) above, and Theorem II is now established.
Conclusion:

We have defined a class of reasonable outcomes for PFF games, and we
determined the nonemptiness of this set for symmetric games. A more general
result is desired, however. It is not clear that Theorem II is true for non-
symmetric PFF games: The nonemptiness of the D set for such games might
require additional game properties. Variations in the definition of D might
prove more fruitful, and other concepts of reasonableness should be studied as
well as their relation to concepts of rationality.

As for the u-value, we still need to determine a computation method. To
do this, we might want to consider how balanced sets and properties of
consistency and covariance should be defined for values of PFF games. The

hope is that this value will be easier to compute than the extension of the

Shapley value for PFF games.
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