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Introduction

In 1944 J. von Neumann and O. Morgenstern published the now classic book
Theory of Games and Economic Behavior which laid the foundation for the modern
mathematical approach to situations of conflict and cooperation. Game theory aims to
model situations in which the interaction of two, or more, individuals (players) leads to
potential payoffs over which each player has his own preferences. In this paper, we shall
be concerned only with cooperative games and one specific model for them, mainly the
coalitional model. In these circumstances, the players have complete freedom of pre-
play communication to make joint, binding agreements. Thus, coalitions will be formed
and they will, as a whole, strive to achieve as large a total payoff as possible. This payoff
is a function of the coalition, and the problem arises, then, as to how the total payoff
gained by each coalition should be divided among its members. Consider, for instance,
the following scenario:

Three adjacent cities are required by the EPA to improve the quality of the air by
some measure. Each city could work individually and invest a certain amount in the
necessary technology to comply with the EPA's new standards. However, each city
realizes that joining its efforts with at least one other city results in attractive savings.
That is, there are incentives for each city to cooperate with others, to form "coalitions."
Ultimately, they realize that the most savings are achieved if all three cities join and
cooperate in one "grand coalition." Now, it must be decided how these savings are to be
distributed among the three cities.

A cooperative game in coalition function form (CFF) consists of a set of players,
the three cities for example, and a "worth" function which assigns a real value or "savings
amount” to each coalition of players. It may be the case that the worth assigned to each
coalition also depends on how the rest of the players cooperate. For example, consider an

oligopoly where a single product is manufactured by a finite (usually small) number of



firms. The profits of one firm, or a group of firms, is likely to be influenced by how the
remaining firms collude. This situation can be modeled using cooperative games in
partition function form (PFF), where the "partition" to which a coalition belongs
determines the worth of the coalition. For either type of game, however, the objective is
the same: to allocate the worth of the grand coalition among all players.

The payoff to be awarded to each player is determined according to certain
solution concepts. These, in turn, are based on specific interpretations of the fairness of
potential payoffs. And so, in an attempt to choose the best allocation for any given game,
concepts of "reasonableness” often arise. The problem of developing an appropriate
theory of reasonable allocations becomes, naturally, an important one, and this is
precisely the motivation for this work.

We begin the paper with some of the basic concepts of cooperative games that
will be relevant to the theory of reasonableness. Also, some of the most common
properties that are desirable of any "reasonable” allocation, or outcome, are studied in this
first section. We then examine in detail Milnor's notion of reasonable demands in
section II, and we use a linear programming approach to determine the maximum
reasonable payoff that any coalition can demand in a given game. The extreme points of
this linear program are characterized, and further simplifications are made when the game
is assumed to be "balanced.” These observations become helpful in section Il where we
investigate Milnor's class D of reasonable outcomes, and we find that this set coincides
precisely with the core, or the set of allocations that are "group rational,” for balanced
games. The concept of strong €-cores is another tool used in this section that gives us a
sufficient condition for D to be empty, which can indeed be the case as shown with an
example. Finally, in section IV, Milnor's concept of reasonable demands is extended to
PFF games, and the nonemptiness of the analogous class D is generalized for symmetric

PFF games.



. Basic Notions

Cooperative Games

A cooperative game consists of a pair (N, v), where N is the set of players, and v
is a real valued function on the subsets of N; that is, v:2¥ —-R. We usually write N={1,
2,3, ..,n}. The function v is called the characteristic function of the game, and v(S)
represents the "worth" of coalition S, where S N. By convention v(J) = 0. We will
refer to these games as Coalition Function Form (CFF) games, or simply games
whenever the form is understood.

A CFF game (N, v) is superadditive if there are incentives for coalitions to form,
or, formally, if v(S UT) 2 v(S) + v(T) for all coalitions S, T ¢ Nsatisfying SNT=02.

In this paper we will restrict ourselves to superadditive games.

Allocations

An allocation, or an outcome, for the game (N, v) is a vector x e R®, where the ith
coordinate of x represents the payoff to player i. The payoff to a coalition SCN is
denoted x(S), where x(S) =¥, ¢ x;.

An allocation is said to be efficient if x(N) = v(N); that is, if the maximum worth
is distributed among all the players. Efficient allocations are also known as pre-

imputations, and the set of all pre-imputations will be denoted E. That is,

E= {x eR" 3. .2 = v(N)}.
Efficiency is clearly a desirable property for any allocation to have, but additional
requirements are often sought. For instance, it might be argued that the payoff to each
player should be at least the amount he can realize by his own right. Then, we want to
consider only those allocations that are "individually rational," or the set of all

imputations, which is given by:



IR(v)={xeE: x(i)2v(i)} !
The notion of rationality can also be extended to groups, and we define the set of all
efficient allocations that are "group rational” to be the core of the game, which we denote
C(v), and we write,
Cv)={xeE: x(S)2v(S) VSc N}.
For the games studied in this paper, the core consists of a closed, convex polyhedron in

the space of payoff vectors.

Balanced Games

An important characterization of the core will be used here which requires the
study of balanced collections and balanced games. These notions were introduced by
Shapley [1967], who studied the relationship between the balanced collections of a game
and the conditions that determine when the game has an empty core.

Definition: Consider a collection C= {S,, S,, ..., S,} of distinct nonempty subsets

of N. This collection is said to be balanced over N if there exist positive real numbers
AA,,...,A,,, called balancing weights, that satisfy for each i e N, 2ies,A;=1. The

vector (A,,A,,...,A,) is called the balancing vector.

Notice that the weights are equal to 1 if and only if the balanced collection C over N is a
partition of N, and so balanced collections may be regarded as generalized partitions. For
example, the collection { {1,2}, 1,3}, {2,3} } is balanced over N = {1, 2, 3} with
balancing vector (4. 1. 1), and the collection { {1,2}, {1,3}, {14}, {2,3,4} } is balanced
over N = {1, 2, 3, 4} with balancing vector (. 1. 4. 2).

Definition: A game (N, v) is said to be a balanced game if, for any balanced collection
C={S,,S,,...,S,} over N with corresponding balancing vector (A Ay, A ), the
“balanced inequality” A,v(S,)+A,v(S,)+ ... +A_v(S,) < v(N) is satisfied.

The following results are proved in Shapley [1967]:

! For simplicity, we ignore commas and brackets when listing the members of a coalition S of N,



Theorem 1: A game (N, v) has nonempty core C(v) if, and only if, (N, v)is a balanced
game. ¢

It is a fact that every balanced collection is the union of "minimal” balanced collections.
Minimal balanced collections are those which include no other balanced collection and
have unique balancing weights. So the theorem above also holds for minimal balanced
games; that is, a game has nonempty core if and only if, for any minimal balanced
collection C = {S,,S,,..., S} with corresponding balancing vector(A,,A,,...,A_), we

have A,v(S,)+A,¥(S,)+ ... +A_v(S_)<V(N).

Notice that if a game is superadditive, the balanced inequalities are automatically
satisfied for the balanced collections that form partitions of N. In a three-player,
superadditive game with N = (1, 2, 3}, for instance, the collection {1,2), 1,3}, 2,3} }
is minimal balanced, and in fact, it is the only minimal balanced collection which does
not form a partition of N. Thus, the only condition for a superadditive game withn=3to

have a nonempty core is that v(12) + v(13) + v(23) < 2v(123).

Symmetric Games

A game (N, v) is symmetric if v(S) = v(T) for all coalitionsS, T < N such that ISI =T,
Notation: If (N, v) is symmetric, define v, =v(S)forall SC N withIS| =s.

Consider a symmetric game with n = 3. Then the inequality needed to have a nonempty
core becomes 3v, £2v;, or 3v, <}v,. Superadditivity also gives v, <1v,, so that if
we regard 1v, to be the "per-capita worth" that a player receives in a coalition of size k,
we see this is largest when k = 3 =n This is, indeed, the case in general:

Proposition 1: If (N, v) is a symmetric game, then C(v) is nonempty if and only if

tv,21lv, foralls=1,2,...,n.



Proof:

If tv,2ly, forallg=1,2.... ,0then x={lv,, dv,, ..., 1v,)eC(v) since

n"a’ n"n?
x(S8)=%v, 2V, =v(S) for each SCN. If C(v) is nonempty, then for each x e C(v),

and foreachs=1,2,...,n, we have v, <min{x(S): ISI=s}<%v_. So lv_ 2 iv. ¢



II. Reasonableness

John Milnor [1952] defined lower and upper bounds for the payoffs that each
coalition should receive in any "reasonable" play of a given CFF game. Of particular
interest in this paper will be the notion of "reasonable demands."

Definition: Let d(S) represent the payoff that coalition S demands in a game (N, v) with
S ¢ N. Then d(S) is unreasonable for S if there exists an allocation x € E so that:

[i] x(N\S) < v(N\S), and

[ii] xR)> v(SUR)-d(S), foreach Rc N \S.
That is, d(S) is unreasonable for coalition S if its complement can "prevent” it from
getting d(S) by enforcing some allocation x which is "feasible™ (condition [i]), and such
that no subset of N\S can be induced to join with S (condition [ii]), knowing S will keep
d(S).
Definition: A payoff for coalition S is reasonable if it is not unreasonable.
Notice that d(N) is reasonable if and only if d(N) < v(N).
Proposition 2: A demand d(N\i) is reasonable for N\i if and only if d(N\i) < v(N) -
v(i).
Proof:
To say that d(N\i) is unreasonable for N\{i} means there exists x € E so that:
[i] x@) < v(i), and
(ii] x(@) > v(N) — d(N\).
Conditions [i] and [ii] hold if and only if v(i) > v(N) — d(N\), or equivalently, d(N\) >
v(N) - v(i). ¢

In general, the maximum reasonable demand for a coalition S ¢ N, denoted

(S), can be obtained by solving the linear program:



&(S) = min &
g % x(N\S)<v(N\S) (LP1)
8+x(R)2v(SUR), RcN\S

For our purposes in this paper, the dual formulation of §(S) will be of greater use. We
can write the dual of the linear program above as follows:
8(8) =max —A,v(N\S)+3 . \\AzV(SUR)
st Dpcnehe =1
Zggmsln =Ags ieN\S, @LP2)
A,20, A, 20, RgcN\S.
Proposition 3: If (N, v) is any game and S ¢ N, then §(S) 2 v(S).
Proof:
Notice that v(N) - v(N\S) is a feasible value for §(S) in LP2 if we let Ao =Ays=1,and
A =0 otherwise. This gives that §(S)2 v(N )—Vv(N\S)2v(S), where the last
inequality holds by superadditivity. ¢
This says that we need not consider R=@ cN\S when determining &(S) for any
ScN.
Example 1
Consider a game (N, v) with N = {1, 2, 3}. To determine § (i) for any singleton ie N,
suppose that § is unreasonable for playeri. Then there exists x € E such that :
[i] x(k) < v(jk);

[ii] x@)>v(@j)- 3
x(k) > v(ik) — &
x(k) > v(ijk) — &

Adding the first two inequalities in [ii] yield

% {x(jk) > v(ij) + v(ik) - 28
[ii] =4 5
x(jk) > v(ijk)- 8

which can now be combined with [i] to require



v(jk) > v(ij) + v(ik) - 26} 2 {8 > 3 v(ij) + L v(ik) — 1 v(jk)
v(jk) > v(ijk) - & 8 > v(ijk) - v(jk)
So if & is unreasonable for player ie N, then & > max { }v(ij)+ 4 v(ik) -3v(jk),
v(ijk) - v(jk) }.
We will show now that these values occur precisely at the basic solutions of the LP2, so
that &(i) = max { $v(ij) + 3 v(ik)-$v(jk), v(ijk)—v(jk) }. We write:

8(i) =max —A,v(jk)+A,v(ij)+ A, v(ik) + A, v(ijk)

st Aj+A, +4, =1

A +A, =4,
A+, =4,
Aos Ajy Ay Ay 20

If A;=0, we obtain A, =0 and A, =X, =1, which gives 8() = v(ijk) - v(jk). If we let
A, =0, we obtain the same result. Finally, letting A, =0 gives A=A, =A;=4 and
8 (i) = $v(ij) + 3 v(ik) — 3 v(jk). So () is given by the maximum of these two values.
Now, since any pair of players in N is of the form N\{i}, then 8(jk) = v(ijk) - v(i) as
shown in Proposition 2 forany ie N

Suppose that 3v(ij) +3v(ik)—3v(jk) < v(ijk)- v(jk), or equivalently that
v(ij) + v(ik) + v(jk) <2v(ijk). The same inequality occurs for any i € N, so that each
d(i) is given by the same feasible solution, namely v(ijk)—-v(jk). Notice that this
inequality is precisely the requirement for the three-player game to have a nonempty core.
In general, 6(S) can be easily determined for any S ¢ N whenever the core of the game
is nonempty:
Proposition 4: If (N, v) is a CFF game whose core C(v) is nonempty, then for each
SC N, 8(S) =v(N) — v(N\S).
Proof:
Suppose C(v)x @. Then all balanced inequalities of the form
*)  AVS)+HAVES)+ ... +A,V(S,) S V(N),
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are satisfied with all Kj 20.

From Proposition 3 we know &(S) 2 v(N) - v(N \ S). We now claim,
3(S) < v(N) - v(N\ S), which is equivalent to:
“AVIN\S) + 3 o s AV(SUR) S V(N) - V(N \ S)
or (1=A)V(N\S)+Y A V(SUR)<V(N)

RgN\S
for all feasible solutions A to LP2.

Since 0<A, <1, then (-4, +1)20. Alsoall A; 20.

Hence, if i€ N\S, we have (1-4¢)+ Y ;. Az =(1=1,)+A, =1. If, on the other hand
ieS,then ) onsAr =1. Thus, our claim is in the form of balanced inequalities which
now hold by (*). ¢

Observe that, whenever the core is empty in a three-player game, each (i) is given by
1v(ij)+1v(ik) - 4 v(jk). The general case is not as easily resolved; however, we are
able to characterize the extreme points of LP2. Notice that the feasible solutions for LP2

are the same feasible solutions for the following linear program:

8(S)+ V(N \S)=max (1-A,)v(N\S)+ 2 ransMVSUR)
St cnshz =1
Zﬁz‘ms"k =L, ieN\S, (LP2"

A,20, 2,20, RcN\S.
This LP2' can be thought of as a "restricted" form of another linear program, mainly:
max z i Asv(S)

st. > As=1 forallieN (LP)
Ag20 forall Sc N

Owen [1982] proves that the extreme points of LP are precisely the vectors of the
minimal balanced collections over N, and in a similar way we can show the following

assertion.
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Proposition 5: The extreme points of LP2' are the balancing vectors of the minimal
balanced collections over N which contain only supersets of S and possibly N\S.
Proof:

First, notice that such vectors are indeed feasible solutions of LP2'. Now, suppose the

vector A = (AT)TCN, where TC N is of the required form, satisfies the restrictions of
LP2'. Then it is a balancing vector for the collection C, ={T: A; >0}. Suppose C, is
not minimal. We claim A is not an extreme point of LP2'. Let C, be a balanced proper

subcollection of C, with balancing vector p = (uT)T:N. We have that p; >0 only if

A; >0, and so for small values of t, define

Yr=01=tA; +tu, Sl Yr =1+ tA, -ty
Yo=(1=-t)A, + i, Yo=(1+A, - tho

for appropriate T N
Then Y and Y’ satisfy the restrictions of LP2, and since Yr <¥s for any T e CN0,,
then Y#7Y’. But this gives that A = 4(y +7°), and so A is not an extreme point of LP2',
Conversely, suppose that C is a minimal balanced collection of the required form. If its
corresponding balancing vector, A, is not an extreme point, then there exist distinct ¥
and Y’ satisfying the restrictions of LP2' and such that A = 3(Y+7Y"). Because of the
nonnegativity constraints of LP2', we must have Yr = Y1 =0 whenever Ar=0,andso ¥
and ¥* will be balancing vectors for C, and C,, respectively, where

C={T:v;>0} and C,={T:v;>0}
are both subcollections of C. Since C is minimal, then we must have C = C, =C,, and by
the uniqueness of A, we also have A =y =7'. This contradiction now gives that A is an
extreme point of LP2'. ¢
Example 2
For a game (N, v) with N = {1, 2, 3, 4} and C(v) =@, all the O (8S) are of the following

form:



(i) = max <

8(ij)=max{

($[v(j) + v(ik) + v(il) - v(kD)};

7 [v(l) + v(ijk) - v(jk1)];

z[V(ik) + v(ijl) - v(jkD];

3[v(ij) + v(ikl) - v(jkD)];

3Lv(jk) + v(ijh) + v(ikl) - 2v(jkD)];

(v(ijkl) - v(jkI)

LIv(ijk) + v(ijl) - v(kD];
v(ijkl) - v(kl)

12

> foreachieN;

J

} for any pair of players i, j.

& (ijk) = v(ijkl) — v(I) for any three players i, j. k.

To show this, suppose first that § is unreasonable for player i. This means that there

exists x € E satisfying all of the following:

x(jkI) < v(jki)
x(G) > v(ij) - &
x(k) > v(ik) - 8
x(1) > v(il) -8

x(jk) > v(ijk) -8
x(j) > v(ij)- o
x(kl) > v(ikl)-d
x(jk1) > v(ijkl) -8 |

So we must have,

v(jkI) > v(ij) + v(ik) + v(il) - 3§
v(jkI) > v(il) + v(ijk) — 28

v(iKI) > v(ik) + v(ijl) - 28

v(jkl) > v(ij) + v(ikl) - 28

2v(jk1) > v(ijk) + v(ijl) + v(ikl) - 35
v(jkl) > v(ijkl)- 8

(x(jk1) < v(jkl)

x(jk1) > v(ijkl) - 8

x(Gk1) > v(ij) + v(ik) + v(il) - 38
x(jk1) > v(il) + v(ijk) - 25

x(jkl) > v(ik) + v(ijl) — 26

x(Gk1) > v(ij) + v(ikl) — 28

2x(jk1) > v(ijk) + v(ijl) + v(ikl) - 38

(8> 4[v(i) + v(ik) + v(il) - v(jk1)]

8> $[v(il) + v(ijk) - v(jki)]

18> 4[vao + v(ih - v

8> 4[v(ij) + v(ikl) - v(jk1)]

& > L[ v(ijk) + v(ijl) + v(ikl) - 2v(jk1)]
) (8 > v(ijkl) - v(jkl)

We now claim that 8(i) is given by the maximum of the values on the right-hand side.

This is justified by considering the extreme points of LP2' for S = {i}. The minimal
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balanced collections for a four-player game (which contain only supersets of {i} and no

proper subsets of {jkl} ) are, with their respective balancing vectors: 2

C, ={T: T as appropriate} A

{ij. ik, il, jki} G H 4D
{i, ik, jia} X))
{il, ijk, ji1} CAE N )
{ik, ijl, jki} G 3D

{ijk, ijl, ikl, jki}
{i, jki} &1
{ijk1} @
It can be easily checked that we obtain the values on the right-hand side of 8 by
computing, for each C_, [ch L,v(T)]—v(jkl). Notice that the collection {i, jkl1}

&
"
e
=

gives us the feasible solution v(i), which we showed was redundant in Proposition 3.
Thus, 8(i) = rréz-xx 2_" . A v(T) - v(jkl).

Suppose now that § is unreasonable for the pair {ij}. This means that there is some

x € E for which

x(kl) £ v(kl)
x(k) > v(ijk)- 8
x(1) > v(ijl)- 8
x(kl) > v(ijkl) - &

x(kl) < v(kl)
= {x(kl)> v(ijk)+ v(ijl) - 28
x(kl) > v(ijkl) -

And we must have

v(kl) > v(ijk) + v(ijl) — 28 } . 8 > 4[v(ijk) + v(jl) - v(kD)]
v(kl) > v(ijkl) - & & > v(ijkl) - v(kl)

Again, we can justify that 8(ij) is given by the maximum of the two values above, for the

only minimal balanced collections (containing only supersets of {ij}, and possibly {kl})

are:

2 These can be found in Owen [1982], p. 162.
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{ijk, ijl, k1} (3, %, 9
{ij, 1} 1,1
{ijk1} 1)

These are the extreme points of LP2' for S = {ij}.

For any triple {ijk}, 8 (ijk) can be found using Proposition 2.

Definition: If (N, v) is a symmetric game, let 3, denote 8(S) for all S N with IS| =s.
Proposition 6: If (N, v) is a symmetric game, then, foreachs=1,..., n, S, =

max {v,,,-g5%V,, :r=0,1...,n-s}.

Proof:
Let v, = z mh(—;_l,—) for any feasible solution A of LP2. Then:

n-s (N—S§
9, =max—lovn_,+zno( # )Yrvrﬂ
st 2t=0( )Y' ik
as (D—85—1
Zm( By )’Y, = A
%20, ¥,20, r=0,1,...,0-s

Substituting for A, we obtain,

8, =max YoV, + 'Y [(n:s)v‘"—(n r—jl)v”]
o B

Y.20, r=0,1,...,n-s.

r—

B Ll n-s n-s—-1 ¢ [R-8 ;
Using v, = Y, and the fact that { = §3 , Write
r r
8 = max Yov +Z;=1 ‘? [vr-n -T'l{?vn-s]

st S ot=k 320 r=0,1,... 05

Finally,



15

8, =max 3" 4.[v,., - nksv,..]
s.t. 2:; ¥.=L %,20;, r=0,1,...,n-s
or §,=max {v,, —:Lv,_ :r=0,1,..., n-s}. ¢
Example 3
If the game in Example 2 is symmetric, then the §, are:

v, —%v,;

V; —%V,;

3 2

8, =max {}v,; i 82=max{ }; dy=v,—v,.
V=V,
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III. Classes of Reasonable Outcomes

Milnor's Class D

Using the concept of reasonable demands, Milnor [1952] defines the class D of
reasonable allocations for any game (N, v), which we denote D(v), as follows:

D(v)={xeE: x(S)<8() forall Sc N}.

The question arises as to whether D(v) is always nonempty. Milnor showed that, if the
game is symmetric then D(v) contains the symmetrical outcome, which assigns each
player the payoff x(i) = Lv(N). A proof of this will also be seen in the next section
(theorem 3), though in a more general setting. In general, however, the set D can be
empty:
Example 4
Shapley [1971] constructed a game with N = { P, P,, . . ., P,, } where there are seven

"distinguished" coalitions, R;, R,, . . ., R,. The game has the additional property that
each player belongs to exactly five of the seven different coalitions, and no two players

belong to the same five. So the incidence matrix is of the form:

e P,
B 0
R e el 0
o LR 1
T S 1
T e 1
R TR 1
e D S 1

Note that there are fifteen players in each of the rows. The characteristic function of the

game, v, is defined so that
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V(@) = 0

v(S) = ISI-1 if D cScR, for somek
v(S) = 1SI-2 if SR, forallkand SN
v(N) = 18

Claim: Shapley's game has D(v) =@. 3
Proof:

First, we will show that d(S) = 37§ is unreasonable for S = N\R,. Notice that
S&R, foranyk, and ISI = 6. Ify is such that y(G) = {% for each jeR,, and y(S) = 4,

then:
[i1 yIN\S) =y(R,) = 15(11%) =14 =15 - 1=v(R,), and

[ii] for each TCR, withITI=tand 0 <t <15, we have
YM-vSUD+dE)= f$t-(6+t-2)+3F= §-(L) >o0.

Thus, by definition, % is unreasonable for S because R, can enforce the allocation y so

that none of its members are induced to join with .

Now suppose x e D(v). Then, i(N\Rk)<37§ foralk=1,2,...,7. So
we have, 36 = 2x(N) = zm x(N\ R,) < 7(37§) = 36, a contradiction. Hence
D(v)=@. ¢

The following result, which is a consequence of Proposition 4, gives us a
relationship between the sets D(v) and C).

Theorem 2: If (N, v) is a CFF game with nonempty core, C(v), then C(v) = D(v).
Proof :

xeC(v) & x(S)2v(S), VScN
X(N)-x(S)<v(N)-v(S), VScN
x(N\S)<v(N)-v(S), VScN
x(S) <v(N)-v(N\S), VScN

x(S)<d(S), VScN
xeD(v) ¢

| O

3 This result is due to David Housman,
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Because we wish to say something about the class D of a game whenever its core
is empty, we seem to have the motivation to study a more generalized concept of the core.
We now present the notion of strong €-cores which Shapley and Shubik introduced
(1963), (1966). A strong €-core can be interpreted as the set of all pre-imputations that
cannot be improved upon by any coalition if one imposes a "cost "of € (or a "bonus” if €
is negative). This € is also referred to as a side payment.

Definition: Let € be a real number. The strong €-core of the game (N, v), denoted
C.(v), is given by:

C.(v)={xeE: x(S)2v(S)-¢, VScN}.
Notice that C,(v) = C(v). Also C,(v) > C,.(v) whenever e>¢’.
One can also define e(S, x) = v(S) — x(S), the excess of coalition S with respect to x, or
more intuitively, the "complaint” of S given the allocation x. Then, the €-core becomes:

C.(v)={xeE: eS,x)<e, VScN},

the set of all pre-imputations that give rise to complaints no greater than &.
It should be clear that C,(v)# @ for sufficiently large €, and C.(v) = Ofor sufficiently
small €. We now proceed to define some critical values of € whose cores will be related
to class D.
Definition: The least-core of the game (N, v), to be denoted LC(v), is the intersection of

all nonempty strong €-cores. Equivalently, if we define the least-¢ to be the smallest €
such that C,(v)# @ and denote it €,, then C.,(v)=LC(v). Formally, the least-¢ is

given by g, = min{ max{e(S,x): G#ScN}: xeE } Clearly, the core is empty if
and only if €, > 0.

Definition: Let &(S) = 8(S)+ v(N \ S) — v(N), and define € = max{e(S): S¢ N}

Notice that if the core is nonempty, then §(S) = v(N) — v(N \ S) and so e(S)=0forall S.
If, on the other hand, the core is empty, then 8(S) > v(N)—v(N \ S) for all ScN, and

so €20.

Proposition 7: For any game (N, v), if € <g, then D(v) is empty.
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Proof:
Suppose that € < €, but D(v) is nonempty. Then, for each x € D(v) and each SC N, we

have:
x(S) £8(S) =¢(S)-v(N\ S)+ v(N)

= x(N\S)2v(N\S)-¢&(S)
= V(N\S)-x(N\S)<eg(S)<E<g,

But this gives e(S,x) <g, for all S € N, which contradicts the minimality of €,. So D(v)
must be empty. ¢

Proposition 8: If (N, v) is any game, then D(v) € C;(v).

Proof:

We may assume D(v) is nonempty and let x € D(v). Then, for each SC N, we have
x(S) < 8(S) =&(S) - v(N \ S) + v(N), which implies x(N \S)2 v(N \ S)-¢(S). That is,
e(N\S,x)<e(S)<E, foreach SC N, thus xeC;(v). ¢

Example §

Consider a game (N, v) with N = {1, 2, 3} and suppose C(v) is empty. Then, we know
8(@1) = L v(ij) + L v(ik) — 1 v(jk) > v(ijk) — v(jk), and 8(jk) = v(ijk)— v(i) for each ieN.
This gives €(i) = 1 v(ij) + 1 v(ik) + £ v(jk) — v(ijk) > 0, and e(N\i) =0 forall ie N. So
we have € = 3 v(ij) + 1 v(ik) + 1 v(jk) - v(ijk).

Claim: D(v) is nonempty and C;(v) = D(v).

Proof:

First, we prove D(v) is nonempty. This can be done by showing 8(i) + 8(j) < 8(ij) for
any pair of players, and Y 8(i)2v(ijk). Since the core is empty, we know
8(i) = $[v(ij) + v(ik) - v(jk)), and 8(j) =3[v(ij) + v(jk) - V(ik)]. Then, 8(i)+3(j) =
v(ij) < v(ijk) — v(k) = 8(ij). This last inequality follows by superadditivity.

Now we verify:
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Y. 800) =4[ V(i) + v(ik) - v(jk)] +
v+ v(k) - v(ik)] +
3lvak) +v(k) - v(ij)] =
=3[ v(ij) + v(ik) + v(jk)] > v(ijk)
The last inequality follows from the assumption that the core is empty. So, if we define x
so that x(i) = 8(i) - .}[E‘ o) - v(ijk)], for each i € N, we have x e D(v).
Since D(v) is not empty, Proposition 7 implies €2 €, and Proposition 8 gives

C;(v) 2 D(v), so we need only show C,(v) c D(v). Let x e C,(v). It follows that, for

eachieN,

e(i,x)<E } x(i)2v(i)-€ } {(l) x(jk) < v(ijk) - v(i) + €
= =

e(jk,x)<E x(jk) 2 v(jk)-€ (2) x(@) <v(ijk)-v(jk)+&
So,
(2) & x()< v(ijk) - v(jk) + 3 v(ij) + $ v(ik) + § v(jk) - v(ijk)
=4 v(ij) + 3 v(ik) - $ v(jk) = (i)
Also,

(2) = x(jk) < 2v(ijk) — v(ik) - v(ij) +[v(ij) + v(ik) + v(jk) - 2v(ijk)]
= v(jk) < v(ijk) - v(i) = 8(jk)
Thus, x(S) <3(S) forall S N ={1,2,3},and so xe D(v). ¢
Example 6

Consider a symmetric game with N = (1, 2, 3, 4}, and empty core. From Example 3, we

know:
1 .
V2= 3Vs
1 v3 %vz;
8, = max {}v,; ; 0, =max i Oy=v,-v,
Vo=V,

Since the core is empty, we also know nv, >sv_, for some s. Observe, however, that we
could not have 4v, > v,, nor 4v, > 2v,, since superadditivity is violated in either case.
So we must have 4v, > 3v,, which implies 1v; > 1v, > 1v,. Using these inequalities, it
can be shown easily that §, =1v,.

Claim: D(v) is uniquely determined by §,; thatis, 28, <3, and 3§, <8,.
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Proof:
By superadditivity, 38, =v,<v,-v,=8,. If §, =v,-4v,, then 25, =4v,<v,-}v,
if and only if }v, <§v, which holds true by assumption. Now, suppose 8, = v, — Vv, SO
that v, — v, 2 v, = 3v,. Then, we have
V25V, 4V, =3V, +3v 23V, +3v, + v, = v, + v,

Thus, $v, <v,-v, and s0 23, <§,. ¢
Notation: In a symmetric game, we use €, to denote €(S)for S € N with IS| = s. That is,
g, =0,+v,, -V,
Claim: D(v)=C;(v)=C, (v).
Proof:

Simple calculations show €, =4v,-v,>0, €, =max{v,+{v,~v,, 0}, and &, =0.

But, g, =3v,-v,23v,+4v,—v, =¢,, thus E=¢,.
Proposition 6 gives D(v) € C;(v), so it remains to show C,(v) € D(v).
Suppose x € C;(v). By the previous claim, we need only prove x(i)<8,. Because
x(N\S)2v,_ —€ for any value of s, and s = ISI, then x(S)< v, —v__, +&. Therefore,
XA Sv, =V, +E=v, -V, +3v,~v,=1v, =5 ,and so C,(v)c D(v). ¢
In general, for a given game (N, v) we cannot always find an € for which C,(v)=D(v).
We illustrate this with the next example.
Example 7:

Consider the CFF game where N={i, j, k, 1} and characteristic function v defined as

follows:
v(i)=0 v(ij) =15 v(ijk) =30
v(j)=0 v(ik)=0 v(ijl) =30
vik)=0 v(l)=15 v(ikl) =15
viD=0 v(jk) =15 v(jkl)=15
v(jD=0

v(kl)=15 v(ijkl) =30

Solving the linear program:
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€, =min €
s.t. e(§5,x)€e VScN
x € IR(v)

we obtain €, = 5. Also, using Example 2 to compute each §(S)gives:

8(i)=15  8(ij) =224 8(ijk) = 30
8(j)=15  8(ik)=30 &(ijl) =30
8k)=7+  l)=15 8(ik1) = 30
d3)=7¢  8(k)=15 8(jkI) = 30
8(jl) = 30
8(kl) =15

Now, notice that an allocation x is in Cy(v) if and only if, for each ScN,
V({8)-5<x(S)<Vv(N)-v(N\S)+5. And if this x is to be in D(v) as well, it must
satisfy v(N)—8(N\S) < x(S) <8(S) for all Sc N. Then, it can be checked easily that
x=(11, 9, 5, 5)eC,(v). However, x=(11, 9, 5, 5)¢ D(v) since we do not have
15<x(il)<£15.
D(v) is not empty since (10, 10, 5, 5)e D(v). So if € is such that C.(v) =D(v), then
€25. But this gives that C,(v) ¢ C,(v) ¢ D(v) which is not satisfied for our x above.
Thus, no such € exists.
Other Classes of Reasonable Outcomes

One could argue that the symmetrical allocation is at least intuitively "reasonable"
for Shapley's game in Example 4, although we saw that no coalition S of size six could
possibly receive a reasonable payoff. The problem was that the complement could
always enforce some allocation which gave S less than what they demanded, if this was
more than v(S). It would appear, then, that no coalitions of size six would form during
negotiations, since it would not be profitable for its members. Based on the idea that the
formation of certain coalitions may not be profitable, we consider other classes of

reasonable outcomes.

Definition: For any game (N, v), let D,(v)={xeE: x(S)<&(S), ScN, ISI= s}.
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Notice that D(v) is the intersection of all D,(v). In general, we do not know when each
D, (v) is empty, but we find that at least two of them are always nonempty.

Proposition 9: If (N, v) is any game withn > 1, then D,_,(v)=IR(v)=D.

Proof:

By Proposition 2, we know that §(N \ i) = v(N) - v(i), for any ieN. Soif x €E is any
allocation satisfying x(N \ i) <8(N \ i) = v(N) - v(i), then it follows that x(i) 2 v(i), and
we have that x is individually rational. The fact that IR(v) is nonempty follows from
superadditivity. ¢

Proposition 10: If (N, v) is any game, then D,(v)# Q.

Proof:

It suffices to show that Zim o(i) 2 v(N), since this gives that the allocation x defined by
x(i) = 8(i) - 1 (X, 8(3) - v(N)) is contained in D(v).

Let us define A, =271, Az =1 for R=N\i and for R =N\ {i,j}, where j#i, and
Az =0 for all other Rc N\S. This is a feasible solution for LP2 since, for j=i,
ZR”J\R =i+82=ad=}  and ZR‘:N“XR =1+21l=1 Then,

(1) 2 —2lv(N\)+1v(N)+1Y v(N\j) =-w(N \i)+%v(N)+%Z).eNv(N \j), and

jmi

0 Y, WSDZ=F vIN\D+vN)+ Y vN\)=v(N). 0



IV. Reasonableness and Games in Partition Function Form

Games in Partition Function Form (PFF) differ from those in Coalition Function
Form (CFF) in that the worth assigned to each coalition depends on how the rest of the
players collude. We begin with the set of players N = {1, 2, . . . , n} and introduce the
following concepts:
Definition: A collection P={S,, S,, ..., S_} is a partition of N if and only if the
following hold: (15 D#8S, CN foreach k =1,...,m; (2)foreach i e N, there exists k so
thatieS,; (3) S, NS; =D forall k = j.
Notation: The set of all partitions of N is denoted PT, and the set of all partitions
containing coalition S, where S C N, is denoted PT(S).
Definition: An embedded coalition is a pair (S;P), where Sc N, and Pe PT(S). The
set of all embedded coalitions will be denoted ECL.
Definition: A PFF game is a pair (N, w) with w e RE®, where w(S;P) represents the
amount, or worth, that coalition S would receive if partition P formed.
Definition: A PFF game (N, w) is superadditive if, for any fixed partitionP € PT and
sets S,T € P, we have w(S;P)+ w(T;P) < w(SUT;Q), where Q is the partition obtained
from P by joining the sets S and T.
All the games treated in this section will be superadditive, PFF games, unless stated
otherwise.
Definition: A partition Q is a refinement of partition P if, for each R € Q there exists
SeP suchthat R cS.
Definition: A PFF game (N, w) is partition-monotonic if w(S;P) <w(S;Q) whenever
P,Q € PT(S) and Q is a refinement of P.
Definition: A PFF game (N, w) is symmetric if permuting the players in any ECL does

not change the worth function.
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Definition: Suppose SC N is given. Let P® denote the partition in PT(S) such that
w(S;P%) = max{w(S;P): VP € PT(S) }, and let Pg denote the partition in PT(S) such
that w(S;Pg) = min{w(S;P): VP e PT(S) }. Notice that if (N, w) is partition-monotonic,
then P* is of the form {S, {i,}, (i), . . . ,{i,_,) }, where i, e N\S foreachk =1, 2,...,
n-s, and Py is of the form {S, N\S}. We are using INI =n, and IS| =s.

Example 8

The following is a symmetric, PFF game with N = (1, 2, 3}

S P w(S;P)
123 123 9
ij ij, k 5
i i, k 0
i i, jk 4

Notice that this game is not partition-monotonic.

Allocations are defined in the same way for PFF games and CFF games, and
again, we are only interested in those outcomes that satisfy efficiency. The set all of pre-
imputations for PFF games will be defined E ={x eR": x(N)= w(N;N)}. We now
extend Milnor's concept of reasonable demands to games in partition function form.
Definition: Let d(S; P) denote the payoff that coalition S € P demands in a PFF game
(N, w) with (S;P) e ECL. Then d(S; P) is unreasonable for S € P if:

[a] w(S;P) <d(S; P), and
[b] there exists an allocation x € E such that:

[i] x(R)<w(R;P) forall S#ReP, and

[ii] x(T)> max{w(SUT;Q)-d(S;P): Qe PT(S)} for any nonempty TC N\S.
Condition [a] says that S is demanding more than its corresponding worth in P.
Condition [b] says that this partition is a "stable" one, in the sense that there are no
incentives for any subset of N\S to join with S, knowing S will keep d(S; P). So the
allocation that N\S is enforcing on S is feasible (condition [i]), and it is also such that S

will not be able to disrupt the partition by causing defections to occur (condition [ii]).
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Definition: A demand d(S) is unreasonable for S if there exists a partition P € PT(S)
such that d(S) is unreasonable for Se P.
Definition: A payoff for coalition S is reasonable if it is not unreasonable.
Given a PFF game, we wish to determine the maximum reasonable payoff,
3(S), that a coalition S can demand in the game. Since all partitions P e PT(S) must be
considered, we have that §(S) = min{8(S;P): P e PT(S)}, where &(S;P) is the maximum
reasonable payoff that S can demand in P. In general, 3(S;P) can be found by solving the
following linear program:
O(S;P) = min §
s.t. d2w(S;P)
-x(R)2-w(R;P) S#ReP
3+x(T)2w(SUT; Q*") G=TcN\S

(LP3)

Again, the dual of this program will be of greater use in this paper, so we write:

8(S;P) = max A, W(S;P)- Yy, w(R;P)+ 2 rons MWSUT; Q)
s.t ze-T;N\SAT +1,=1
2R Ve = Z;gms A for ieN\S (LP4)
Ao Yoo Rp 20
Proposition 11: If (N, w) is any PFF game, then (N \i) = W(N;N) - w(i; {i,N\i)) for
any ieN.
Proof:
Since there is only one partition to consider, namely P = {N\, i}, we know
S(N\i)=8(N\i; {i,N\i}). Now, suppose that & is unreasonable for (N\i; P). Then,
[a] w(N\;; P) < 8, and
[b] there exists x € E such that
[i] x(i) <w(i; P), and
[ii] x()>w(N;N)-8§
These conditions hold if and only if



27

(@) w(N\; P)< 8,and (b) w(i; P)>w(N; N)-8 & & > w(N; N) - w(i; P).
However, (a) is redundant since superadditivity gives w(N; N) - w(i; P)2 w(N\;; P).
Thus, 8(@i) =w(N; N) - w(i; P). ¢
Definition: The set of all reasonable outcomes for a given PFF game (N, w) is:
D(w)= {x € E: x(S) is reasonable, S ¢ N}.
Proposition 12: Suppose (N, v) is a CFF game. Define the PFF game (N, w) by setting
W(S;P) = v(S) for each (S;P). Then the following hold:
(1) (N, w) is partition-monotonic;
(2) If (N, v) is superadditive, then (N, w) is also superadditive.
(3) D(v)=D(w)
Proof:
(1) This follows directly from the definition of partition-monotonicity, since w(S; P) =
w(S; Q) forall P,Q e PT(S).
(2) Let S,S' < N be two disjoint sets. Then,
VSUS)2v(S)+v(S) & w(SUS;Q)=w(S;P)+w(S ;P)
for any Pe PT(S,S' ) and any Qe PT(SUS).
(3) We have that y € D(v) if and only if y(S) is reasonable for all S < N; that is, for each
S < N and each x € E, one of the following occurs:
[i] x(AN\S) > v(N\S), or [ii] x(T)<v(SUT)-y(S) for some T c N\S.
But [i] <>x(N\S) > w(N\S;P) for any P € PT(N \ S), and
[ii] = x(T) Sw(SUT;Q)-y(S) forall Qe PT(SUT)
Therefore, y(S) is reasonable for each (S;P) e ECL, and so y € D(v) if and only if
yeD(w). ¢
Clearly, in view of Shapley's game and the previous proposition, D(w) is sometimes
empty. In fact, this set could be empty for much simpler games.
Example 9

Reconsider the game presented in Example 8:



S P w(S;P)
123 123 9
ij ij, k 5
i i k 0
i i, jk 4

By Proposition 11, we have 8(ij)=9-4=35 for any pair of players. To compute (i),
we first let P = {i, jk} and use LP4 to write:

O(i;P)=max 4A, -5y, +54;+ 54, + 91,
st Ag+A;+A, +4, =1
Y —A, -4, =0
=2, -4, =0
Aos Yz A Ayu Ay 20
which reduces to:
8(i;P) = max 47Lo-5(lj+lk)+5(lj+lk)+9l,,
= max 4(lo+lk+7\.i)+lk
St Ag+A;+A, +4, =1
+A;,  +A, =7,
+X, +4, =7,
Aos Yo Ajs Ay Ay 20
and so 8(i; P)= 4.
If P = {i, j, k} then we obtain from LP4:
8(i;P)=max O, —0y; -0y, + 51, +51, +9,
St Ag+A 4R+, =1
¥ — A -1, =0
N —A-A,=0
Aos ¥is Yo Ajp Au Ay 20

which reduces to:
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8(i; P) = max SA;+5A, + 9,
=max 5(1-A4,)+4A,
St Ag+A;+A, +4, =1
Ay +hy =y,
A +A, =7,
Aos Yo Yis Ajp Ay Ay 20
and so 8(i;P)=9. Thus, we now get 8(i)= 4.
Now, since any x € D(w) satisfies W(N;N)-8(N \ S) < x(S)<(S), for each S cN,
then we must have 4 < x(i) < 4 for each player i, and 5< x(ij) <5 for each pair. These
inequalities are clearly inconsistent, and so D(w) must be empty.

The following result says that, whenever a PFF game is partition-monotonic, we
need only consider a unique partition in PT(S) to determine whether d(S) is reasonable
for SCN.

Proposition 13: Suppose (N, w) is a partition-monotonic game and let S ¢ N be given,
so that P = {S, N\ S}. If d(S;Ps) is reasonable for S e P, then it is reasonable for (S;
P), where P is any partition in PT(S). That is, §(S) = 3(S;Py).
Proof:
If d(S; Py) is reasonable for S € Py, then one of the following occurs:
[a] d(S;Ps) <w(S;Py), or
[b] for each x € E, we have

[i] x(N\S) > w(N\S; Pg) or

[ii] x(T)<w(SUT;Q)-d(S;P;) for some T N\ S, and some QePT(SUT).
If [a] is the case, then d(S;P) < w(S;Ps) < w(S;P) for all P e PT(S), and so d(S;Py) is
reasonable with respect to all P € PT(S).
Suppose [b] is the case. If [ii] holds, then we are done since this relationship is
independent of partition P. If [i] holds, then superadditivity implies

x(N\S)>w(N\SP)2 > " w(R,;P),
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where P is any refinement of P; of the form P={R,, R,, . . ., R,,, S}.

Then, there exists some R ; € P such that x(R i)> W(R;;P). That is, for each P e PT(S),
and each xeE, some payoff x(R) is unfeasible for R € P, so, again, d(S;Pg) is
reasonable for S with respect to all P e PT(S). ¢

A similar conclusion cannot always be made for games that are not partition-monotonic.
This can be seen in Example 9 where 8(i;P,) = 8(i;(j,k}) = 9, but 3(i;P') =4, and so
3(i) = 8(i; P,).

Proposition 14: Assume (N, w) is a partition-monotonic, PFF game. Define a CFF
game (N, v) by setting v(S) = w(S;P;) for each S ¢ N. Then D(v) < D(w).

Proof:

Let yeD(v). Since y(S) is reasonable for all Sc N , then for each x eE one of the
following occurs: [i] x(N\S) > v(N\S), or [ii] x(T) < v(SUT)-y(S) for some Tc N\S.
Condition [i] says x(N\S) > W(N\S;Ps), which implies y(S) is reasonable for S with
respect to Pg. Then, by Proposition 12, y(S) is reasonable with respect to all P € PT(S).
Condition [ii] says x(T)<w(Su T;Qsur) = ¥(S), where Qsur ={SUT, N\ (S uT)},
and so y(S) is reasonable with respect to P e PT(S). Therefore, y € D(w). ¢

Example 10

We begin with the set of players N = (1, 2, 3, 4). Define a symmetric PFF game with

characteristic function w, and then a CFF game as in Proposition 13 with characteristic

function v:
S P w(S;P))
1234 1234 12 (S v(S)
ijk ijk, 1 10 i 12
i i, k, 1 8 Lik 10
i i, kI sf > e
i LRt 3 b &
i i jk, 1 1
i i, jk1 0)
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The (S) are, with respect to w: 8(i)=4% 8(ij)=74  3(ijk) =12, and with respect
to v: 8(i)=3% 3(j)=7% &(ijk)=12. The later values can be obtained from
Example 3.

Notice that x = (3%, 34, 2, 2) e D(w) \ D(v), so that the inclusion above is strict.
Claim: Let (N, w) be any partition-monotonic, PFF game with INI = 3. If we define a
CFF game (N, v) by setting v(S) = w(S;P;) for each S ¢ N, then D(v) = D(w).

Proof:

By the previous proposition, we need only show D(w) € D(v). So let y € D(w). Since
¥(S) is reasonable for all S ¢ N, we know y(S) is reasonable for S e P so that, for each
x € E, either one of the following holds:

[i] x(N\8)>w(N\S;Ps) or, [ii] x(T)Sw(SUT;Q)-y(S) for some Tc N\S, and
some Qe PT(SUT).

If [i] holds, then y(S) is reasonable for Sc N with respect to the CFF game v since
xX(N\S)>w(N\S;P;)=v(N\S). If [ii] is the case, then notice that, since n = 3,
ISUTI =2, or ISUTI =3. But any pair of players in a three-player, PFF game belong to
a unique partition, and the same is true for the grand coalition. Thus,
WS UT;Q)=v(SUT) is always true, and we have that x(T) < v(SUT)-y(S). Again,
this gives that y(S) is reasonable for S ¢ N with respect to v, and so yeD(). ¢
Theorem 3: If a PFF game (N, w) is symmetric and partition-monotonic, then
Dw)= 2.

Proof:

We want to show +w(N;N) is reasonable for all S N. If not, then for some S ¢ N and
for Pg = {S, N\ S}, we know there exists an allocation x € E such that:

[i] x(N\S)<w(N\S;P;), and

[ii] x(T)> w(SUT;P*¥T) - +W(N;N), foreach TCc N\ S.

We may choose x € E satisfying x(j) = ;5 w(N\ S;P,) for each jeN\S, so that we

have equality in [i]. This is because, if T and T* are subsets of N\S with ITl = I'T*l, we
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have w(SUT;P**") = w(SUT";P*“") and so [ii] still holds if payoffs are distributed so
that x(T) = x(T").
Notice that if T=N\S, our choice of x and [ii] imply:
(*) w(N\S;Pg) > 2=2w(N;N).

Casel: n>2s
Choose TCN\S sothatITI=t=n-2s>0. Then ISUTI=n-s and, by symmetry, we
have w(SU T;P**T) = w(N \ §;P™*). So [ii] becomes:

22 w(N\S;Pg) > w(N \ §;PV') - £ w(N; N).
By definition of P™'* we have w(N \ §;P™\*) > w(N \ §;P;), so

22 w(N\ S;Pg) > w(N \ S;P5) - £w(N;N)

< :W(N;N)> L w(N\S;Pg)

& 2ZEw(N;N)> w(N\S;P).
This contradicts (*) above.
Case2: n<2s
If n-2s<0 sothat n~s<s<n, then n-s<s+t<nfort=1,2,...,n-s. There
exist nonnegative integers k and r such that n = k(n-s)+r and 0<r<n-s. So choose
TCN\S with Tl =t =n-r-s = k(n—s)-s, or equivalently, t + s = k(n—s). Observe
that 1<t<n-s. For such T, then, superadditivity gives

wEUT;P*T) 2 kw(N\ S;Q)
where Q is a partition consisting of k sets of size (n—s), and r singletons, each of which is
a member of N\ (SUT). Notice that Q is a refinement of Py={S, N\ S}, and so
= WIN\S;Q) 2 5 w(N\S;Py).
Now [ii] becomes:
= WINASQ) > x(T) = ;5 w(N \ §;P5) > w(SUT;P5T) - £ w(N; N)

< HwWN\SQ) > kw(N\S;Q) - £ w(N;N)
< LWIN\SQ)> £ w(N\S;Q)-£w(N;N)

< 2wW(N;N)> L w(N\S;Q)
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& 2w(N;N)>w(N\S;Q)
= 2Ztw(N;N)>w(N\S;P;)
This contradicts (*) once again, and therefore £w(N;N) is reasonable for all Sc N.

Then, the symmetrical allocation is contained in D(w). ¢



Conclusion

As a desirable property for allocations of CFF games, Milnor's notion of
reasonableness is, in general, less restrictive than that of group rationality. That is, the
core is always a subset of Milnor's class D. We found that if a game is balanced, the core
coincides precisely with Milnor's class D of reasonable outcomes. This can be seen
geometrically, since the core is determined by the hyperplanes x(S)2 v(S) for Sc N :
but this is equivalent to x(N \ S) < v(N) - v(S) = 8(N \ S), which gives the hyperplanes
that determine the set D.

Whenever a game is not balanced, we are able to find a value of €, namely
€= max{S(S) +v(N\S)-v(N): S¢c N}, so that D(v) € C;(v). Whether the strong E-
core is the smallest set with this property is left unresolved. Two special cases are found,
however, of games which are not balanced and have class D equal to the strong € -core.
These are all three-player games, and all four-player symmetric games. In general, it is
not known under what circumstances we might have some value of & for which the
strong €- core is equal to the set D.

Milnor's class D is sometimes empty, as illustrated with a twenty-one-player game
defined by Shapley [1971]. This is the only game we know with D being empty, and it
would be of interest to determine whether this is the smallest game with such property.
While we have shown that D is nonempty for all three-player games, we do not know if
this remains true for four-player games.

We also define, based on Milnor's concept of reasonable demands, other classes
of reasonable outcomes that are less restrictive than class D, and we found that one of
them coincides with the set of allocations that are individually rational. Another set, Dy,
might be greater interest for games with empty class D, since it is always nonempty and
no bigger than the set of imputations.

For PFF games, we were able to establish the nonemptiness of the analogous class

D for symmetric and partition-monotonic games. We also found small games having D
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empty, which suggests that perhaps other classes of reasonable outcomes should be
studied for these games. For example, we might consider extending the definition of D,
to PFF games, or we might define a class of outcomes for which the payoffs to the
members of a fixed partition are reasonable. Also, concepts of rationality should be
examined for PFF games that may be related to Milnor's, or other, notions of

reasonableness.
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