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Abstract

This is a study of the history and types of auctions held around the
world. The single item first-price, sealed bid auction and the multiple
object auction were mathematically modeled with the goal of finding

the optimum bidding strategy in each case.



1 Chapter One: The History and Types of Auc-

tions

1.1 History

The first to mention auctions throughout history is Herodotus, a
Greek historian. He tells us that around 500 BC the Babylonians held
auctions every year in their villages. Once a year all of the village maidens
were brought together to be auctioned off to husbands. The men stood
around the maidens as they were called up one at a time and offered for
sale, beginning with the most beautiful. When she was sold, the next most
beautiful maiden was brought up. The rich Babylonian men would bid
against one another for the attractive women, and they would be sold for
a very high price. After all of the beautiful women had been bid on, the
ugliest woman would then be called up. The poorer Babylonian men would
bid to accept her for an amount of money. Whoever would marry her for
the smallest amount of money, she was assigned to. These payments to the
poorer men for taking an ugly wife were made from the money that the rich
men had paid for the most beautiful women.[3, page 44]

The Romans also had auctions in very early times; they held them for
commercial trade. To pay for their debts, Romans would sometimes auction
off their furniture or other belongings.[5, page 7] On the Greek island of
Delos, the legendary birthplace of the god Apollo, slave auctions were held
in which Romans, Greeks, and pirate traders would attend.[5, page 8] The

largest auction of all time took place approximately 93 AD. This was during



the Roman supremecy, and the entire Roman empire was put up for sale
by the Praeterian Guard. Emperors bid on the empire in the hopes of
expanding their kingdoms.[5, page 9]

There is a lack of information about auctions after the fall of Rome and
throughout the dark ages. The earliest evidence of auctions after this period
is in France, about 1556. Auctions were held on the property of a deceased
owner or a debtor.[5, page 15]

“The earliest reference to the word auction in the Ozford English Dictio-
nary dates from 1595”[5, page 16], but there is evidence that auctions were
going on in England prior to this. Evidence submitted in the London courts
during a case in 1795 shows that auctions were held in England at the end
of the fifteenth century. It is documented that Henry VII had a definite
definition of an auctioneer, but it is not until late in the seventeenth century
that we find hard evidence of auctions being conducted. A record from this
time period indicates that Conditions of Sale in auctions were already set
and that at least three different types of bidding were in use.[5, page 16]
It is clear that by 1682 auctions were very common events in London. An
issue of the London Gazette during this year makes reference to “the daily
attendence at the auction house.”[5, page 20]

It is common knowledge that slave auctions were held in early America.
However, information about specific sales of slaves is hard to find before
the 1700’s. In 1736 there is a record of 300 African slaves being sold at an
auction in Yorktown, Virginia. In 1737 in Yorktown, there is record of 490
slaves sold at an auction. These slave auctions finally ended in 1865, with

the end of the Civil War.[5, page 31]



At the same time slave auctions were being held in America, auctions
were becoming popular in Europe. During the latter part of the eighteenth
century, the auction business was growing rapidly in London and Paris.
These auctions were moving towards the types of auctions that are held to-
day. In 1745 Samuel Baker had his first auction sale of books. He would later
found Sotheby’s, a famous auction house in England. The following, taken
from Learmount’s book “A History of the Auction,” is a list of sophisticated

conditions for auctions set up by Samuel Baker:

1. That he who bids most is the Buyer, but if any Dispute
arises, the Book or Books to be put to sale again.

2. That no Person advances less than Sixpence each bidding,
and after the Book arises to One Pound, no less than One
Shilling.

3. The Books are in most elegant Condition, and supposed to

be Perfect, but if any appear otherwise before taken away,
the Buyer is at his Choice to take or leave them.

4. That each Person give in his Name, and pay Five Shillings
in the Pound (if demended) for what he Buys, and that no
Book be deliver’d in Time of Sale.

5. The Books must be taken away at the Buyer’s Expence,
and the Money paid at the Place of Sale, within Three
Days after each Sale is ended. Any Gentleman who cannot
attend the Sale, may have their Commissions receiv’d and
faithfully executed By their most Humble servent Samuel
Baker.[5, pages 47-48]

Before the war of 1812 the American government discouraged American
ships from entering European ports, shutting off most of the foreign supply.

This brought about a great demand for goods, especially the mass produced

goods from Britain. British merchants stocked their possessions closest to



America, such as Bermuda and Halifax, with such goods. They waited there
for the hostility to cease, and when it did, they sold their goods by auction.
They chose this method of sale because it was the most convenient and the
quickest. The domestic merchants complained about the mass dumping of
British goods on the American market, but a campaign developed against
the autioneers.[5, page 82] The claim was that these auctions were destroying
local trade and disturbing commerce and industry in general.

An anti-auction movement began in America, and the first phase of
this lasted until 1824. Boycott was one method used against auctioneers;
this proved to be unsuccessful. In 1828 Congress was flooded with petitions
concerning the outrages committeed by auctioneers.[5, page 83] This was not
a one sided argument. There were also statements submitted to Congress
about the honor and honesty of auctioneers.

Such periods of anti-auction sentiment coincided with recessions. Do-
mestic merchants placed blame on the auctions for their poor trade. Today
there are similar criticisms of auctions, that some are corrupt and rigged.
These criticisms of auctions are voiced regularly, and just as in the past they
eventually disappear.[5, page 99]

Today, auctions are held all over the world in various markets. In 1994,
in the United States, the Federal Communications Commission (FCC) held
its first auction for the licenses for wireless phone systems. The FCC worked
with John McMillan, an expert in game theory, to determine how they could
make the most money through an auction of these licenses. The potential
bidders of this auction were companies such as Pacific Bell, Bell Atlantic

Corp., and MCI Communications Corp. These companies also hired game



theorists to argue with the FCC about how the auction should be run, and
to help them bid strategically.[6, page 48]

Prior to July of 1994 the Federal Communications Commission decided
which companies had access to available radio-spectrum bands. Licenses for
these bands were auctioned off for the first time on July 25, 1994. This
auction was almost completely designed by game theory experts. The FCC
had to take into consideration that a well designed auction must account for

certain uncertainties.

1. The seller does not know how much the bidders value what
they are bidding on. In this case, if the government knew
how much bidders valued the radio-spectrum bands, they
could just set a price and there would be no need for an
auction.

2. The bidders don’t know how profitable it would be to win.

3. The bidders don’t know how much the others think the item
being auctioned is worth.[9, page 70]

1.2 Bidding Methods

In some auctions only one item is up for bid. This type of auction is known
as a single item auction. There are various methods of bidding associated
with these auctions, the most common of which is the ascending bid auction.
Our word ‘auction’ comes from the Latin ‘auctio’, meaning increase. There-
fore auctions are perceived to be run by bidders giving successive offers of
increasing amounts.[5, page 6] This type of auction has been used in Eng-
land for so long that it is sometimes referred to as the ‘English’ method.[5,

page 127] There are ascending bid auctions held with different rules than



the English method. One of these is the ‘sale by candle’. This auction type
was used for a long time in England. An inch of candle was set up, and
when it was lit, the auctioneer would begin to accept ascending bids. The
person to give the last bid before the candle went out would win the lot.[5,
page 17] An auction very similar to the sale by candle is the sale by sand
glass. The last bid to be called out before all of the sand in an hour glass
runs out is accepted.[5, page 128]

Another type of auction, the descending bid, has been used in Holland for
a very long time. For this reason this type of auction is sometimes referred to
as the ‘Dutch’ auction. In this method of auction, the auctioneer begins by
choosing a starting price greater than what he expects to make. He then calls
out lower prices until the object is sold. Today this method of auction is used
in Holland, England, and Israel in fish markets. In Holland bidders gather
in amphitheaters to purchase cut flowers. Everyone sits at a desk facing
a clock-type mechanism. The hand begins to rotate around the “clock”
pointing to the highest selling price first, and as it rotates counterclockwise
it points to lower and lower prices. Whenever a bidder hits a button at his
desk, it stops the clock and the lot is sold to that bidder at the amount the
pointer indicates.[5, page 130]

There are also second price auctions. In this case, the person who bids
the highest amount wins, but he only pays the amount of the second highest
bid. This auction type is sometimes called the ‘Vickery auction’ because
Vickery showed that the best bidding strategy to use in an auction of this
type is to bid what you are willing to pay.[4, page 65]

A sealed bid auction is one in which each bidder writes down the amount



of his bid, seals his bid and gives it to the auctioneer. The auctioneer then
opens the bids one by one and reads them aloud. The highest bid wins. Just
as the ascending bid auction had different rules for how the bidding was done,
the sealed bid auction has different methods. One type that originated in
China is known as the handshake auction. The auctioneer has a piece of cloth
covering his hand, and one by one the bidders shake his hand underneath the
cloth, indicating by pressing the auctioneer’s fingers the amount of their bid.
After everyone makes an offer, the auctioneer announces the highest bidder.
Until relatively recently this bidding method was used in Pakistan for the
sale of dried fish.[1, pages 71-72] The whispered-bid auction is very much like
the handshake auction. Bidders whisper their bids to the auctioneer one by
one, and after each takes his turn the auctioneer announces a winner. This
bidding method is used in the fish markets of Singapore, Manila, Venice,
and Chioggia.[1, page 73]

When more than one object is up for bid, the auction is known as a
multiple object auction. For this type of auction, the bidding methods for
single item auctions may be used as each item is put up for bid one by one.

In the case where the Federal Communications Commission held an auc-
tion for licenses for wireless phone systems, they had to try to determine
which rules of auction to use. The English auction, the Dutch auction, the
sealed-bid auction, and the Vickery auction were all under consideration.
The FCC had to choose which of these auction rules would best meet the
goals of collecting a large amount of money, encourage competition, and cre-
ate service areas that are efficient. If they chose the English auction, prices

may go up as the participants can see what their rivals are doing; however,



bidders may collude in order to keep the prices low. If the Dutch auction
was used, the bidders may have been very cautious, resulting in lower bids.
A sealed-bid auction would have less chance of collusion among the bid-
ders, but this could also be less revenue for the government as bidders often
act cautiously with this bidding scheme. The Vickery auction would have
resulted in high bids, but the seller may end up getting too little.[6, page 48]

The multiple object auctions may also be held with people bidding si-
multaneously on the objects for sale. Simultaneous bidding is yet another
method of auction. The United States Department of the Interior holds
multiple object auctions with simultaneous bidding for the leasing of land
owned or controlled by the government for oil and gas exploration and de-
velopment. A list is posted by each state of all the available land for leasing.
Bidders then makes an offer by submitting a bid on an “Automated Simul-
taneous Oil and Gas Lease Application” during the filing period. This filing
period ends fifteen working days after the lists are posted. Once the filing
period is closed, one applicant is selected randomly by computer for each
parcel of land. If the applicants bid is not considered by the government to
be high enough, a reselection is made from the remaining applicants.[8]

The FCC auction of radio-spectrum bands was held in multiple rounds.
In each round the bids were sealed. This style limits the threat of bidders
colluding. It also minimizes the chance of a winner’s curse, which is when
a bidder wins an auction by bidding very high, but then is unable to gain
enough from the object to make his bid worthwhile.[9, page 70]



1.3 Common and Private Value Auctions

A common value auction is one in which all of the bidders are trying to
estimate the value of what they are bidding on. The object that is up for
bid would be worth the same amount to each bidder but none of the bidders
know what the worth is. Suppose, for example, that a tract of land which
may contain oil is up for bid. All of the bidders can estimate how much the
land is worth, but no one will know the true value of the land in this case
until years after the auction is held.[4, page 61]

In a private value auction each bidder knows how much he values the ob-
ject being auctioned. However, he only has probabilistic information about
how much the other bidders value that same object. In a private value auc-
tion the problem is not determining how much the object is worth. The only

problem is determining how to bid strategically.



2 Chapter Two: Modeling a Single Item Private

Value Auction

2.1 Set-up

We will now study the single item private value first-price, sealed bid auc-
tions by studying the symmetric case. Suppose that for an auction we have
a set S of n bidders, or players. So S = {1,2,...,n}. Each player knows
what the object is worth to him, but he does not know how much it is worth
to the other bidders. Each player places a nonnegative bid on the object
without knowing the other bids. The highest bidder wins the object and

pays the amount of his bid. Let X, Xo,...,X, be random variables.

Definition 1. If S is a sample space with a probability measure and X is
a real-valued function defined over the elements of S, then X is called a

random variable.[2, page 83]

Each of these X;’s represents the value of the object being bid on by that
player. For example, X represents player one’s value of the object being bid
on. We assume that the X;, Xo...., X,, are independently and identically
distributed with a distribution function G. So we have G(z) = Prob [X; <

z]forall1 <:< n.

Definition 2. The function F' defined by F(X) = P[X < z]for — o0 <

x < oo is called the distribution function of X.

To say that the random variables are independent is to say that the value
of one of these variables does not depend probablistically on the value of any

of the others.
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Definition 3. X1, Xa,...,X, are independent random variables if Prob[a; <
X1 < bya £ X3 < by,...,an £ Xy, < by] =Probla; < X; < b]-Problag <

X9 < bg]---Probla, < X, < b,] for all aj,a9,...,a,,b1,b,...b,.

Definition 4. A density function is the derivative of the distribution func-

tion.

Assume our distribution function G has a density function g. The den-
sity function indicates how likely a particular outcome is to occur. This
assumption implies that Prob [X; < z] = Prob [X; < z] for all z. We will
assume that G(0) = 0, or that the object is never worth a negative amount.
Finally, we will make one rather technical assumption. That is that the
density function g is continuous at all but finitely many places. The reason
for this last assumption will become apparent later.

Let R be the set of nonnegative real numbers. The strategy for player
i is given by o; : Rt — R where 0; maps each player’s nonnegative real
number values to real bids. This strategy function is necessary because a
player does not bid the amount he thinks the object is worth. The player
must take into consideration what he thinks the other players’ values are,
and how accurate his estimated bid is. Each player wants to choose a bidding
strategy that will give him the maximum expected payoff given the bidding
strategies of all of the other players. If all players choose a strategy in this
manner, the resulting profile of strategies is a Bayesian equilibrium.

Before doing any calculations, we make a few assumptions. We wish
to find a Bayesian equilibrium, (01,09, ...,0,). So, we begin by assuming

that (o1,09,...,0,) is in fact a Bayesian equilibrium. Also, we assume that
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01,09,...,0, are all increasing functions. That is, each player would bid
more for the object the more he values it. We will assume that o1, 09,...,0,
are all differentiable functions. Also, 61 = 09 = -+ = 0, = 0. That is, all

players use the same strategy.

2.2 The Expected Payoff Function

Now consider player . Suppose that X; = z, player ¢ bids b, and player
J uses strategy o; for each j # i. The payoff for player ¢ is (z — b) if ¢’s
bid is the highest, and zero otherwise. Player ¢’s bid, b, is the highest if
b > 0;(X;) for all j # i. Hence, the expected payoff function for player 7 is

given by:
wi(b,x,{0;}j2i) = (z — b)Prob[b > 0;(X;) Vj #1).

We have assumed o; is an increasing function, and this implies that o; is

1

one-to-one. So we know that 0" exists. Taking aj_l of each side of the

inequality in the probability, we now have:
mi(b, ,{0j}j:) = (z — b)Probloj1(8) > X; Vj #1l.

To make notation less confusing, let v; = 0]-"1.

wi(b, z, {0 };j2i) = (x — b)Prob[y;(b) > X; Vj #1i].

12



Because of the independence of our random variables X1, Xo,..., X, we

may now write:
7ri(b, z, {O’j}jygi) = (1: - b)Hj;éiPrOb['Yj (b) > Xj].
Putting our probability distribution function into the equation we have:

wi(b, x, {0} i) = (x — b)IL;2:G (v; (D).

Because we assumed all o;’s are equal to o, all v;’s are also equal to y = o~}
q Vi q Y ’

and we may write:

mi(by z, {0j} ) = (z — b)G(v(b))" .

2.3 Finding the Optimum Strategy

By taking the derivative of the above equation with respect to b we will be
able to determine the optimum bid. So we begin by using the product rule

and the chain rule:

5 = @—bn- 1)G(v(6)"2g(v(B))7' (b) + (-G (v (B))* .
We wish to maximize our payoff function, w;. Since (01,092,...,0,) is a

Bayesian equilibrium, the payoff function is maximized when the bid, b,
is equal to o(z). Since we are trying to find the optimum bid, we now

substitute o(z) into the above equation for b, and set it equal to zero. That
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is
on;

5 lb=0(z)=10

(z = 0(2))(n — 1)G(v(o(2)))"?9(v(o(2)))7 (0(2)) = G(x(a(z)))" .

Recall that « is the inverse of o, so the composition of these two functions

will be the identity function, and the above will simplify to:

(@ = o(2))(n— D)G(z)" *g(z) (0(2)) = G(z)"".

Remember that v = 671, So ¥/(0(z)) = (67 !)'(o(z)). And recall from cal-
culus that the derivative of the inverse of a function is equal to the reciprocal
of the derivative of the original function. So we can substitute 'a_'%ii in the

above equation for 4/(o(z)). We now have:

1
o'(z)

(z — a(z))(n — 1)G(z)"?g(z) =G(z)".
Now simplify.

(¢ = o(2))(n— 1)G(2)"*y(z) = G(2)" "o’ (2)

z(n - 1)G(2)"?g(2)] = G(2)" o' (2) + o(2)[(n — 1)G(2)"%g(2)]

Notice that in the above equation, the right hand side is equal to %[G (z)" lo(z)].

So we can now write:

ol(n = 1DG(@)"9(@)] = 216" o(@)]

14



Before integrating both sides of this equation, change all of the z’s to t’s.
tlin — DGO ()] = TG o (1)
Now we may integrate with respect to ¢t from 0 to z:
||t =16y 2gtt) dt = 6@ o(@) - GO o(0)

Recall that we assumed that G(0) = 0, so the second term in the right hand
side of the previous equation is just 0. Solving for o(z) we find that
(n—-1) [*

0(2:)=E(—m : tG(t)"2g(t) dt.

We must now check to see if this o fulfills all of the assumptions that
we made on it at the very beginning. So we must check to be sure that the
o(z) that we found is defined, differentiable with respect to b, increasing,
and maximizes 7;(b,z,{0;}j%i). Our o is defined for z > 0 because the

second term is in fact integrable, this comes from the following Theorem:

Theorem 1. If f is a piecewise continuous function or a bounded mono-

tonic function on [a,b)], then f is integrable on [a,b].[7, page 196]

So our o(z) is defined as long as our density function g is continuous at
all but a finite number of places. In fact our density function g does fulfill
this requirement because of the assumption that we made on it at the very
beginning of our calculations. This is precisely why we had to make such an

assumption about the density function from the very beginning.

15



We know that our o(z) is differentiable because G is differentiable, and

the Fundamental Theorem of Calculus allows us to differentiate the integral.

Theorem 2. Let f be an integrable function on [a,b]. For z € [a,b], let
F(z) = [T f(t)dt. Then F is continuous on [a,b]. If f is continuous at xo
in (a,b), then F is differentiable at z¢ and F'(zq) = f(z0).[7, page 199]

So o is differentiable everywhere that g is continuous.

The product rule and the chain rule tell us that the product and composi-
tion of differentiable functions is differentiable. So by using the product and
chain rules, the quotient rule, and the Fundamental Theorem of Calculus

we can find the derivative of our o.

n— 2 z)? 2
() = - LTI [* 6012900 de oG @) (e

We now check to be sure our o(z) is an increasing function. We do this
by checking to see if o/(z) > 0. We must simplify the o/(z) equation in order
to do this. We begin with

(n — 1)’G(z)"%g(z)
(G(=z)"~1)?

(n—

o(z)=— Gz )n 1

/0 " 166" 2g(8) dt+ = (06 (2)" 2 (@),

Now put one of the (n — 1) quantities of the first term inside the integral.

, n—1)G(z)"%g(z) [* n—
0(x)=—-( ((;(x()i)q)zg( )/ (n — DtG(t)"2g(t) dt
(n— n—
+G( = 1[$G(ﬂ=) %g()].

We can calculate [ (n — 1)G(t)"2g(t)tdt using integration by parts.
0

16



Let u = t, du = dt, dv = (n—1)G(t)"2¢(t) dt, and v = G(t)"~1. This gives
us:

[ =6yt =@yt~ [*cy-ta
9 0

Putting this back into our ¢’(z) equation, we have:
(n — 1)G(2)""%g(z) [ ~1 /"' —1 ]
o'(z)= - zG(z)" " — | G@)" " dt
(2) BTRT @~ [ Gw

+ gt [5G (o))

Multiplying both the first and second terms out:

oy (m=1)G(@)*%g(2)2G(z)" '  (n—1)G(z)"%¢(z) [* , n-1
Tl = (e e, GO
(n —1)2G(z)"?g(z)
G(m)n—l :
Simplifying:
oy — _m—g(z)z  (n—1)g(z) n—1 (n —1)zg(z)
o'(z) = G () + Gla)" / G@)" dt+ G

The first term is the negative of the third term, so these two drop out of the

equation. We are left with just

ey (2= 1Dg(2) i
() = 2= Ds@) = /G(t) dt

This term is positive because G(z) and g(z) are both positive for z > 0, so
o'(z) > 0. Therefore o is an increasing function.

We know that the o that we found is a maximum. This is because the

17



payoff function 7;(b, z, {0;};%:i) = (z — b)G(v(b))"! is equal to zero when
the bid, b, is either zero or z, but is positive for any other bid b € (0, z).
We found our optimum bid o by setting the derivative of the payoff function
equal to zero and solving. Therefore, our ¢ must give a maximum, because
it cannot be a minimum. This is true assuming that o(z) € (0,z). Our o(z)
has this property, as shown below.

First recall the definition of o(z).

_(n=1) [*

=z )k tG ()" 2g(t) dt

o(z)

Again, put the (n — 1) inside the integral and integrate by parts. Doing this

we will have:

o(z) = -G(xl)ﬁ [za(x)"-l - /0 "G dt]

Multiplying through, we will have:

ol = mG(m)n_l _ 1 ‘ n—1
(z) G~ G /0 G(t)"dt

First simplify:
1 T
o(r) == —G(a:)"—l/g G(t)" " d

It is from here that we can see that our o(z) € (0,z). The second term

is positive, but as we will see, it is less than z. We can see this by bringing

18



the a# inside the integral.

x G ( t) )n—l
dt.
fo (G(l‘)
This integrand is less than one because here, ¢ will be less than z, which

-1
implies that G(t) < G(z). Integrating (%%) and 1 from zero to z,

we will see that the integral is less than z. So we have = minus a positive

number that is less then z, giving us o(z) € (0, z).

2.4 Finding the Expected Payoff and the Expected Selling

Price

Now that we have found our optimum bidding strategy there are several
other values that we may calculate. We can find what our expected payoff
will be. The payoff function that we formulated at the beginning of the

chapter, m;(o(z), z, {0;};x:i) was:

mi(o(2), 7, {j}j) = (z — 0(2))(G(v(o(2)))" .

Simplifying, we have,

mi(0(2), 2, {0;}j:) = (z = 0(2))G(2)" .

Now putting our optimum bidding strategy in for o(z), we have our expected

payoff.

mi(o(z), 2, {oj}jx) = ( ((;Z = )1 tG(t)"2g(t) dt) Gl="1,

19



We can also find what the expected selling price of an object will be if all of
the players are using this strategy. The selling price for this type of auction
will be the amount of the highest bid. So the selling price, P, is a random

variable, and the expected selling price is

E[P] = max {0(X1),0(X2),...,0(Xn)}.

Let H be the distribution function of the maximum, Y, of the bids. So

Y = max {0(X1),0(X2),...,0(X,)}. Then we have:

H(y) = Prob [Y < y].

This is equal to the probability that each bid is less than or equal to y. Now

we have:

H(y) = Prob [O'(Xl),O'(X2), .. '7U(Xn) < y]

This can be broken into n smaller probabilities because of our assumption

of independence:

H(y) = Prob [0(X1) < y] Prob [0(X32) < y]... Prob [0(X,) < ]

H(y) = Prob [X; < 7(y)] Prob [Xz < ¥(y)]... Prob [X, < (y)]

Now putting in our distribution function we have:

H(y) =G(y(¥))...G(v(y)) = G(v(v)"
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The density function, A is given by
h(y) = nG(YW)* g ().

So our expected selling price, E[P] = [;° yh(y) dy.
e <]
EIPl= [~ G o) dy

2.5 A Graphic Example

We can see more clearly what this model is demonstrating through a few
graphs. Suppose we have the distribution function G(z) = 1 — e~%/%, and
the density function g(z) = e~*/%. The following graphs show the density
functions, the optimal strategy functions, and the expected payoff functions
respectively. The thinest line on each graph represents § = 2, the next
thickest is § = 4, then 6 = 6, and the thickest line on each graph is § = 8.

For the functions involving n, n = 4.

The density function
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As we can see from the above graph, the density function decreases
less rapidly as our 8 increases. This is because our negative exponent of e

becomes smaller and smaller.

The optimal strategy

o
[
o
N
o
w
o

40 50

It appears from the above graph that the slope of the strategy function
decreases as our § increases. So it seems that we would want to bid less the

higher the 6 is.

10 The expected payoff function

Pi_i (x)




The graph of the expected payoff function shows that for this distribu-

tion, the smaller the 0, the higher the expected payoff function will be.
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3 Chapter 3: Modeling a Multiple Object Auction

3.1 Set-up

Now we will turn our attention toward modeling a multiple object auction.
Once again we will begin with a set of n bidders, but now we will have two
identical objects up for sale. By identical, we mean that the bidders value
each object equally. Let X3, Xo,...,X, be independent and identical ran-
dom variables, each representing the value of each object to that bidder. So
for example, X1 would be player one’s valuation of object one and his valu-
ation of object two. Just as in the previous model, G will be the probability
distribution of the X;’s and its derivative, g, will be the density function.
For this model we will also assume that every player has the same amount
of money, call this amount B.

We begin with the conjecture that there exists a symmetric Bayesian
equilibrium, (o, 7), which describes the strategy of each player. So if X; = z
a player 7 will bid o(z) on either object one or object two and 7(z) on the
one that he did not bid o(z) on. Player ¢ will randomly select which strategy
he will use for which object.

We will again make the assumption that o is an increasing, differentiable
function. Also, we will assume that o(zg) = %. Now we make the following

assumption on 7(z):

o(z), ifz<z
r(z) = ’

B —-o(z), ifz > =zg.
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The following graphically demonstrates what these functions may look

like under all of our assumptions:

Strategy functions

sigma

a°

tau

3.2 The Expected Payoff Function

We now assume that each player j, when j # 1, is using the Bayesian
equilibrium. Our payoff function for player 1 on object one will be the worth
of object one minus player i's bid times the probability that player i’s bid

is larger than the n — 1 other bids, denoted p(b;). So we have:

i object one(b1, Z, {0 }j2i, {Tj}ji) = (z — b1)p(b1).
Similarly, the payoff function for object two to player ¢ will be given by:

i object two(2, T, {05} iy {Tj}ii) = (= — b2)p(b2).
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Putting these two together, we have the payoff function for player :

(b1, ba, z, {0 }jzi, {5} i) = (z — b1)p(b1) + (z — b2)p(b2).

Because we assumed independence we may write p(b) = II;iq;(b), where
g;(b) is the probability that b is larger than j’s bid. For the moment, let’s
just consider object one. Since player j randomly selects whether he uses
strategy o or strategy 7 to bid on the object, each occurs with a probability

of % So we have
1 1
g;j(b) = 3 Prob [o(X;) < b] + 3 Prob [7(X;) < b].

First let’s consider player i’s bid, b < 2. Then the Prob [r(X;) < b] =
Prob [0(X;) < b or (B — 0(X;)) < b]. We can see this by looking again at
the graph of our functions.

Because these two events are mutually exclusive we may write,
Prob [r(X;) < b] = Prob [¢(X;) < b]+ Prob [B —o(X;) < b].

Subtracting B from both sides of the second probability and then multiply-

ing through by a negative one, we have

Prob [7(X;) < b] = Prob [0(X;) < b]+ Prob [¢(X;) > (B - b)].
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Now take o1 of both sides of both probabilities.
Prob [7(X;) < b] = Prob [X; < o~ 1()]+ Prob [X; > o~ (B - b)).

Now let us consider player ¢’s bid b > % Then the Prob [7(X;) <
b] = 1 we can see this clearly by looking again at the graph of our strategy
functions.

So now we have

% Prob [X; < o71(b)]

1 ifb< 2
gi®) =1 +3 [ Prob [X; <o '(b)]+1— Prob [X; > o~} (B-b)]],
1 Prob [X; < o1(b)] + 3[1], ifb< 8.

Putting our distribution function, G, into these equations, we can now

formulate our g;(b)

n 1G(o~1(b) + A[G(e71 () + 1 - G(o~}(B-b))], ifb< &
g;(b) =

LG\ (0) + 1, if b >

X o]

Simplifying the first equation we have

G(o (b)) + 3[1 - Gle}(B -b))], ifb< B

|

q;(b) =
1G(o71(b)) + 3, if b >

|y
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Recall that we said p(b) = II;£ig;(b), so we can now find our p(b).

[Ge'(®)+3(1 -Gl Y (B-o))*!, ifb< §
p(d) = .
3

3G(e~1 (1) + 5", if b

v

3.3 Finding the Optimum Strategy

Now if (o,7) is a Bayesian equilibrium, then #; is maximized at b; = o(z)
and by = 7(z) within the constraint 0 < b; + by < B, graphically the

constraint is:

b 2 Constraint

B

B b

To find the maximum of #; we must take the derivative and set it equal
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to zero. We begin by finding p’(b).

(

1 n—2
(=1 [eeT Oy + g0 -G B

P6) =1 - [’ ®)o™)®) + 59(' (B B) (oY (B b)),

[Xle.}

(n—1[3G(@71(®) + 31" 239(a'®)) (@~ (0),  ifb>

(X [+,

\

There are two cases for us to consider; the case where ¢ < z( and the
case where z > xo.

Case I: If z < z¢, then a necessary condition that m;(b1, b2) be maxi-
mized at by = bp = o(x) is that

orn;

9, |5y =0 (z)= 0.

Case II: If z > z, then a necessary condition that m;(b;,b2) be maxi-
mized at by = o(z),bs = 7(z) is that m;(b, B — b) be maximized at b = o(z),

and a necessary condition for this is that
d
Egﬂ'i (ba B - b) |b=a(a:)= 0.

By taking the derivative of these two equations and setting them equal
to zero, I was unable to solve for ¢ and 7 in the general form. Therefore
I was unable to solve for the optimum bidding strategies in the multiple

object auction.
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Auctions.ma

Commands for Graphs Done by

Mathematica

Graph 1: The density function

glx_] :=E*(-%/0)

Plot [{E* (-x/2),E*(-x/4), EA (-x/6), E~ (-x/8)}, {x, 0, 50},

Axes -> False,

Frame -> True,

FrameLabel -> {"x", "y = g(x)"},

PlotLabel -> "The density function",

PlotRange -> {0, 1},

PlotStyle -> {{Thickness[0.003]}, {Thickness[0.006]},
{Thickness[0.009]}, {Thickness[0.012]}}]

Graph 2: The optimal strategy

sigmalz_] := (n-1)/G[z]A(n-1)*
Integrate[x*G[x]*(n-2)*G’ [x], {x,0,2}]

G[x_] := 1-EA(-x/theta)

Plot[{1-EA(-x/2), 1-EA(-x/4), 1-E* (-x/6), 1-E~ (-x/8)}, {x, O,

Axes -> False,

Frame -> True,

FrameLabel -> {"x", "y = o(x)"},

PlotLabel -> "The optimal strategy",

PlotRange -> {0, 1},

PlotStyle -> {{Thickness[0.003])}, {Thickness[0.006]},
{Thickness[0.009]}, {Thickness[0.012]}}]

Graph 3: The expected payoff function

Plot[{(1 - EA(-x/2))43*(x - (3*

(11/9 + (-2 + 9*EA(x/2) - 18*EAx - 3*x +

9*EA(x/2)*x - 9*EAx*x)/(9*EA((3*x)/2))))/

(1 - E~A(-%/2))43), (1 - E*(-x/4))*3*(x - (3*
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(22/9 + (-4 + 18*EA(x/4) - 36*EA(x/2) - 3*x +
9*EA (x/4)*x - 9*EA(x/2)*x)/(9*EA((3*x)/4))))/
(1 - EA(-x/4))*3), (1 - EA(-x/6))43*(x - (3*
(11/3 + (-2 + 9*EA(x/6) - 18*EA(%x/3) - x +
3*EA(x/6)*x - 3*EA(x/3)*x)/(3*EA(x/2))))/
(1 - EA(-x/6))43), (1 - EA(-x/8))*3*(x - (3*
(44/9 + (-8 - x)/E*(x/8) + (4 + x)/E*(x/4) -
(8 + 3*x)/(9*EA((3*%x)/8))))/(1 - EA(-x/8))*3)}, {x, 0, 15
Axes -> False,
Frame -> True,
FrameLabel -> {"x", "Pi_i(x)"},
PlotLabel -> "The expected payoff functionv,
PlotRange -> {0, 10},

PlotStyle -> {{Thickness[0.003]}, {Thickness[0.006
{Thickness[0.009]}, {Thickness[0.01:

Graph 4: The strategy functions

sigmal[x ] := x
taulx_] := x /: x<=5
taulx_] := 10-x /: x>=5

Plot[{sigma[x], tau[x]}, {x, 0, 10},
Axes -> True,
FrameLabel -> {"X_i", “Bid"},
PlotLabel -> "Strategy functions",
PlotRange -> {0, 10}]
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show[gl, Graphics|[Text["sigma", {7,
Graphics[Text ["tau", {9, 2}111]

Graph 5: The constraint
flx_] := -3
Plot[{£f[x]}, {x, 0, 10},
Axes -> True,
FrameLabel -> {"b_1", "b_ 2"},
PlotLabel -> "Constraint",
PlotRange -> {0, 10}]

8111,



