Consider the following graphs. The graph in Figure 1.11 is the graph of y = f(x).



Figure 1.11

- 1. Which could be a graph of cf(x)?
- 2. Which could be a graph of f(x) k?
- 3. Which could be a graph of f(x-h)?

Consider the following table. Find the following values.

| x  | f(x) | g(x) |                 |                                  |
|----|------|------|-----------------|----------------------------------|
| -2 | 1    | -1   | 4. $f(g(1)) =$  | 7. If $f(g(x)) = 1$ then $x =$   |
| -1 | 0    | 1    | 5. $f(g(0)) =$  | 8. If $f(g(x)) = 0$ then $x =$   |
| 0  | -2   | 2    |                 |                                  |
| 1  | 2    | 0    | 6. $f(g(-1)) =$ | 9. If $g(f(x)) = 2$ then $x =$   |
| 2  | -1   | -2   |                 | 10. If $g(f(x)) = -2$ then $x =$ |

11. g(f(0)) =

12. g(f(8)) =

13. g(f(3)) =

14.f(g(2)) =

15.f(g(-1)) =

Consider the following graph. Estimate the values



Figure 1.14





17. One of the graphs below shows the rate of flow, R, of blood from the heart in a man who bicycles for twenty minutes, starting at t = 0 minutes. The other graph shows the pressure, p, in the artery leading to a man's lungs as a function of the rate of flow of blood from the heart.



(a) Estimate p(R(10)) and p(R(22)).

(b) Explain what p(R(10)) means in practical terms.

18. If 
$$f(x) = \sqrt{x^2 + 1}$$
 and  $g(x) = e^{x^2}$ , then what are  $f(g(x))$  and  $g(f(x))$ ?

19. Assuming the graph is of a function involving a logarithm, what might the formula be?



20. Sketch graphs of the following functions:

(a)  $y = -\ln(4+x)$ , (b)  $y = \ln(4-x)$ , (c)  $y = 3^{x-4}$ , (d)  $y = 3^{4-x}$ .



21. Given the graphs of the functions g and f below, what is the graph of f(g(x))?