05 Power and Periodic Functions

Expressions, Functions, and Equations

$\ln \left(x^{2}+x\right) \quad$ is an expression--algebraic operations with a variable
$f(x)=\ln \left(x^{2}+x\right) \quad$ is a function definition--given an input, what output will be produced? (= defines)
$\ln \left(x^{2}+x\right)=0 \quad$ is an equation--what values of x satisfy this? (== signifies two numbers are the same)
Let $f(x)=\ln \left(x^{2}+x\right)$. What is $f(3.1)$?

Does $x=3.1$ satisfy the equation?

Make graphs of $f(x)$ and $g(x)=x^{2}+x$ on a suitable domain. (You might use WolframAlpha).

First, estimate the horizontal intercepts of $f(x)$. Then use $g(x)$ together with your knowledge about the $\ln (\ldots)$ function to estimate the same quantities.

How is the graph of $f(x+a)$ different from $f(x)$?

Power Functions

Body Size

The DuBois formula states that for a 70 kg person the fourth power of her or his surface area s is proportional to the cube of her or his height h. Find a formula for surface area as a function of height.

How can this relationship be described in more colloquial terms?

If a 70 kg person is 180 cm tall and has a surface area of $1.42 \mathrm{~m}^{2}$, what is the proportionality constant?

Planets

Find a function that relates for the first four planets in our solar system the period, T, of revolution about the sun (in Earth years) to the mean distance, D from the sun (in millions of miles). (Use the data on Mercury and Jupiter to do this "by hand")

Planet	Mercury	Venus	Earth	Mars	Jupiter
Distance, D	36.0	67.1	92.9	141.7	483.4
Period, T	0.24	0.62	1	1.88	11.87

$\ln [12] \mathrm{j}=$ ddata $=\{36.0,67.1,92.9,141.7,483.4\}$;
pdata $=\{0.24,0.62,1,1.88,11.87\} ;$
data = Transpose[\{ddata, pdata\}];
plotdata $=$ ListPlot[data, PlotStyle \rightarrow Red]

Periodic Functions

The definition of cosine and sine: Given a number t, travel that distance counterclockwise around the unit circle starting from the point (1,0). Call the resulting point (x, y). Then $\cos (t)=x$ and $\sin (t)=y$. The amplitude of these functions is 1 and the period of these functions is 2π.

Goshen Temperature

Consider for Goshen, Indiana, the mean daily temperature (in ${ }^{\circ} \mathrm{C}$) as a function of days after January 1, 2012. Find a function that models the trend of this data.

Do this by estimating the amplitude, midline, and the horizontal shift, and figuring out what the period ought to be.
$\ln [33]:=$
station = WeatherData[\{"Goshen", "Indiana", "UnitedStates"\}];
xdata = Range[0, 365];
ydata =
Values[WeatherData["KGSH", "MeanTemperature", \{\{2012, 1, 1\}, \{2012, 12, 31\}, "Day"\}]];
data $=$ Transpose[\{xdata, ydata\}];
plotdata = ListPlot[data, PlotStyle \rightarrow Red]

Out[37]=

