

What are the critical points of f ?

What are the local minima of f ?

What are the local maxima of f ?

How do the above answers change if the upper hole at x_{3} is filled in?

How do the above answers change if the lower hole at x_{3} is filled in?

The table records the rate of change of air temperature, H, as a function of hours since midnight, t, during one morning.

t	6	7	8	9	10	11	12
$d H / d t$	1	2	0	-2	0	3	2

When was the temperature a local minimum?

Critical Points, Local Maxima, and Local Minima

Find all critical points, local minima, and local maxima of the following functions.
$f(x)=4 x^{3}+3 x^{2}-36 x-5$
$g(x)=x-2 \ln \left(x^{2}+3\right)$

Critical Points, Local Maxima, and Local Minima

Find a differentiable function that has a local maximum at $(0,5)$, a local minimum at $(2,1)$, and no other local extrema.

Which of the following pieces of information from a daily weather report allow you to conclude with certainty that there was a local maximum of temperature at some time after 10:00 am and before 2:00 pm?
(a) Temperature 50° at 10:00 am and 50. and falling at 2:00 pm.
(b) Temperature 50 at 10:00 am and $40{ }^{\circ}$ at 2:00 pm.
(c) Temperature rising at 10:00 am and falling at 2:00 pm.
(d) Temperature 50° at 10:00 am and 2:00 pm, $60{ }^{\circ}$ at noon.
(e) Temperature $50{ }^{\circ}$ at 10:00 am and $60{ }^{\circ}$ at 2:00 pm.

Graph two continuous functions f and g, each of which has exactly five critical points, the points A-E in Figure 4.12, and which satisfy the following conditions:
(a) $f(x) \rightarrow \infty$ as $x \rightarrow-\infty$ and $\mathrm{f}(\mathrm{x}) \rightarrow \infty$ as $\mathrm{x} \rightarrow \infty$
(b) $g(x) \rightarrow-\infty$ as $x \rightarrow-\infty$ and $\mathrm{g}(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$

Assume f has a derivative everywhere and just one critical point, at $x=3$. In parts (a) (d), you are given additional conditions. In each case, decide whether $x=3$ is a local maximum, a local minimum, or neither. Sketch possible graphs for all four cases.
(a) $\mathrm{f}^{\prime}(1)=3$ and $\mathrm{f}^{\prime}(5)=-1$
(b) $\mathrm{f}(\mathrm{x}) \rightarrow \infty$ as $\mathrm{x} \rightarrow \infty$ and as $\mathrm{x} \rightarrow-\infty$
(c) $\mathrm{f}(1)=1, \mathrm{f}(2)=2, \mathrm{f}(4)=4, \mathrm{f}(5)=5$
(d) f '(2) $=-1, \mathrm{f}(3)=1, \mathrm{f}(\mathrm{x}) \rightarrow 3$ as $\mathrm{x} \rightarrow \infty$

