[5.4] Interpretations of the Definite Integral

Temperature Example. Suppose $f(t)$ is the outdoor temperature in ${ }^{\circ} \mathrm{C}$ at t hours after midnight. The table provides known values of f.

t	0	8	10	12	18	24
$f(t)$	3	5	7	10	2	-6

1. Estimate $f^{\prime}(10)$ and provide an interpretation.
2. Estimate $f^{\prime \prime}(10)$ and provide an interpretation.
3. Estimate the average temperature during the 24-hour day
4. Estimate the area between the graph of $y=f(t)$ and the t-axis.

Heart Example. Suppose $r(t)$ is the rate at which the heart is pumping blood in liters per second and t is the time in seconds. What does $\int_{0}^{10} r(t) d t$ mean?

Feet Example. If the units for $f(x)$ are feet per minute and the units of x are feet, then what are the units of $\int_{0}^{5} f(x) d x$.

Population Example. Suppose $f(t)$ is the rate of change of the population of a city, in people per year, at time t years since the start of 1990. If the population of the city is 5000 people at the start of 1990 , give an expression for the population today.

Flu Example. In Figure 5.11, the function f(t) gives the rate at which healthy people become sick with the flu, and $\mathrm{g}(\mathrm{t})$ is the rate at which they recover. Which of the graphs (a) - (d) could represent the number of people sick with the flu during a 30-day period? (What does the vertical intercept mean?)

