Fundamental Theorems of Calculus

Define derivative and describe verbal, graphical, numerical, and symbolic aspects.

Define definite integral and describe verbal, graphical, numerical, and symbolic aspects.

Suppose f is defined by the graph.

Estimate f'(x) at each integer x in the table.

x	0	1	2	3	4	5	6	7	8	9	10
f'(x)											

Draw a graph of f'.

Estimate $g(x) = \int_0^x f'(t) dt$ at each integer x.

x	0	1	2	3	4	5	6	7	8	9	10
g(x)											

Draw a graph of g on the axes containing the graph of f.

What is the relationship between g and f?

Fundamental Theorems of Calculus

First Fundamental Theorem of Calculus Suppose today at 7:00AM was 43797.0 hours after David's car was built. Suppose f(t) is the miles David's car has gone t hours after it was built. Interpret $\frac{f(43797.5) - f(43797.0)}{43797.5 - 43797.0} = 30$. Interpret f'(43797.25) = 50. Suppose g(t) is the miles per hour of David's car t hours after it was built. Interpret g(43797.0)(0.2) + g(43797.2)(0.1) +Second Fundamental Theorem of Calculus g(43797.3)(0.2) = 14.Interpret $\int_{43797.0}^{43797.5} g(t) dt = 15$. Restate the above in terms of the function f.