- f(x) is the age of Antarctic ice (in hundreds of years) at a depth of x meters below the surface.
 (a) In words, what is the practical meaning of f(10)?
 - (b) Is f increasing or decreasing, and why?
- 2. From the following table

Та	bl	e	1	.1	.1	

\boldsymbol{x}	1	2	3	4	5	6			
f(x)	2	3	7	6	4	2			
f(2)									

- (a) Find J(3).
- (b) Find the value(s) of x that give f(x) = 2.
- 3. An object is put outside on a cold day and its temperature, H, in degrees Celsius, is a function of the time, t, in minutes since it was put outside.
 - (a) What does the statement H(30) = 10 mean? Use words and remember to include units in your answer.
 - (b) The graph of H versus t is shown below. Explain in terms of temperature of the object and the time outside, what each of the following mean.

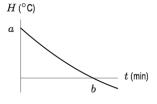


Figure 1.1.3

- *i*. vertical intercept *a*
- ii. horizontal intercept b
- 4. Suppose g(x) is an exponential function. Complete the table of values for the function g below.

x	0	5	10	15	20
g(x)	10	20	?	?	?

Now find a formula for g(x).

5. Values for g(x) are given in the table below. Is g(x) concave up, concave down, or neither? **Table 1.3.9**

x	1	2	3	4	5	6
g(x)	100	90	81	73	66	60

- 6. Sketch a graph of a function that is decreasing at an increasing rate. Increasing at an increasing rate
- 7. A population is growing according to the function $P = 250(1.065)^t$, where P is the population at time t.
 - (a) What is the initial population?
 - (b) What is the annual growth rate?
 - (c) What is the population in year 10?
 - (d) How many years will it take for the population to reach 1000?
- 8. An exponentially decaying substance was weighed every hour and the results are given below. If the formula $Q = Q_0 e^{-kt}$ gives the weight of the substance, Q, at time t in hours since 9 am, then $Q_0 =$ _____ and k =_____. Round k to 2 decimal points.

Time	Weight (in grams)
9 am	14
10 am	12.542
11 am	11.235
12 noon	10.065
1 pm	9.017

9. A bakery has 200 lbs of flour. If they use 5% of the available flour each day, how much do they have after 10 days? How much do they have left after n days?

10. If
$$8 \cdot (2.5^x) = a \cdot e^{kx}$$
 find a and k.

- 11. If the size of a bacteria colony doubles in 8 hours, how long will it take for the number of bacteria to be 5 times the original amount?
- 12. A cigarette contains about 0.4 mg of nicotine. The half-life of nicotine in the body is about 2 hours. How long does it take after smoking a cigarette, for the level of nicotine in a smoker's body to be reduced to 0.08 mg?

13. Use the table below.

Table 1.8.19

x	0	1	2	3	4
f(x)	2	4	6	3	5
g(x)	5	3	2	1	0

Find
$$f(g(1)), g(f(1)), f(g(3)), g(f(3))$$

14. The graph of y = f(x) is shown below.

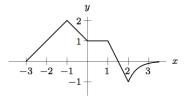
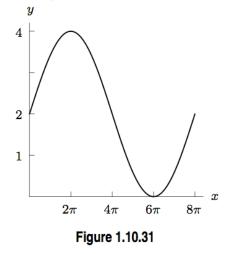


Figure 1.8.23


Sketch the graph of y = 2 - 2f(x).

- 15. The number of species *S* on an island is proportional to the square root of the area *A* of the island. An island with an area of 4 square miles contains 20 species.
 - (a) Find a formula for *S* as a function of *A*.
 - (b) If an island is 9 square miles in area, determine the number of species expected on the island.
- 16. Consider the function given in the table below.

Table 1.10.22

x	1	2	3	4	5	6	7	8	9
f(x)	-2	0	-2	-4	-2	0	-2	-4	-2

- (a) Explain why the function represented in the following table appears to be periodic.
- (b) Approximate the period and the amplitude of the function.
- (c) Assuming the function is periodic, estimate f(10) and f(15).
- 17. Find an equation which defines the function shown below.

