1. $\quad f(x)$ is the age of Antarctic ice (in hundreds of years) at a depth of x meters below the surface.
(a) In words, what is the practical meaning of $f(10)$? $f(10)$ is the age of the ice, 10 meters below the surface.
(b) Is f increasing or decreasing, and why?

You would expect f to be increasing, because the deeper you go, the older the ice.
2. From the following table

Table 1.1.1

x	1	2	3	4	5	6
$f(x)$	2	3	7	6	4	2

(a) Find $f(3) . f(3)=7$
(b) Find the value(s) of x that give $f(x)=2 . f(x)=2$ when $x=1$ or when $x=6$
3. An object is put outside on a cold day and its temperature, H, in degrees Celsius, is a function of the time, t, in minutes since it was put outside.
(a) What does the statement $H(30)=10$ mean? Use words and remember to include units in your answer.
30 minutes after the object is put outside, its temperature is 10 degrees Celsius
(b) The graph of H versus t is shown below. Explain in terms of temperature of the object and the time outside, what each of the following mean.

Figure 1.1.3
i. vertical intercept a

The vertical intercept a is the temperature when the object is first placed outside.
ii. horizontal intercept b

The horizontal intercept b is the time it takes for the object to reach 0 degrees Celsius.
4. Suppose $g(x)$ is an exponential function. Complete the table of values for the function g below.

x	0	5	10	15	20
$g(x)$	10	20	$?$	$?$	$?$

Now find a formula for $g(x)$. Various equations (all equivalent) are possible - One simple one is $g(x)=10(2)^{\times / 5}$
5. Values for $g(x)$ are given in the table below. Is $g(x)$ concave up, concave down, or neither?

Table 1.3.9

x	1	2	3	4	5	6
$g(x)$	100	90	81	73	66	60

6. Sketch a graph of a function that is decreasing at an increasing rate. [I've decided this is an ambiguous question. Instead:]
Sketch a function that is increasing at an increasing rate: It's concave up:

7. A population is growing according to the function $P=250(1.065)^{t}$, where P is the population at time t.
(a) What is the initial population? 250
(b) What is the annual growth rate? 6.5%
(c) What is the population in year 10? Compute $250(1.065)^{10}$
(d) How many years will it take for the population to reach 1000 ? Solve for $t .1000=250(1.065)^{\mathrm{t}}$. So $4=(1.065)^{\mathrm{t}}$. Take natural \log of both sides: $\ln (4)=t \ln (1.065)$. Therefore $t=\ln (4) / \ln (1.065)$. So about 22 years.
8. An exponentially decaying substance was weighed every hour and the results are given below. If the formula $Q=Q_{0} e^{-k t}$ gives the weight of the substance, Q, at time t in hours since 9 am, then $Q_{0}=$ \qquad 14 \qquad and $k=$ \qquad 0.11 \qquad . Round k to 2 decimal points.

Time	Weight (in grams)
9 am	14
10 am	12.542
11 am	11.235
12 noon	10.065
1 pm	9.017

9. A bakery has 200 lbs of flour. If they use 5% of the available flour each day, how much do they have after 10 days? How much do they have left after n days?
After 10 days they have about 119.7 lbs
The formula is $A=200^{*}(0.95)^{\wedge} n$ where A is the amount of flour after n days.
10. If $8 \cdot\left(2.5^{x}\right)=a \cdot e^{k x}$ find a and k.
$a=8$ and $e^{k}=2.5$ so $k=\ln (2.5)=0.916$
11. If the size of a bacteria colony doubles in 8 hours, how long will it take for the number of bacteria to be 5 times the original amount?
If the size doubles in 8 hours, we can write this as $N=N_{0}(2)^{t / 8}$. Solve $5 N_{0}=N_{0}(2)^{t / 8}$. Or $\ln (5)=t / 8 * \ln (2)$. So $t=8 * \ln (5) / \ln (2)=18.57$ hours - so a little over 18 and a half hours.
12. A cigarette contains about 0.4 mg of nicotine. The half-life of nicotine in the body is about 2 hours. How long does it take after smoking a cigarette, for the level of nicotine in a smoker's body to be reduced to 0.08 mg ?
If the half life is 2 hours we can write this as $A=0.4(1 / 2)^{t / 2}$. Solve $0.08=0.4(0.5)^{t / 2}$.
Or $\ln (0.08 / 0.4)=t / 2 * \ln (0.5)$. So $t=2 * \ln (0.08 / 0.4) / \ln (0.5)=4.64$ hours - so about 4 hours and 40 minutes.
13. Use the table below.

Table 1.8.19

x	0	1	2	3	4
$f(x)$	2	4	6	3	5
$g(x)$	5	3	2	1	0

Find $f(g(1))=3^{g(f(1))}=0^{f(g(3))}=4^{g(f(3))}=1$
14. The graph of $y=f(x)$ is shown below.

Figure 1.8.23
Sketch the graph of $y=2-2 f(x)$. Stretch by 2 vertically, flip it over the horizontal axis, Shift up by 2

15. The number of species S on an island is proportional to the square root of the area A of the island. An island with an area of 4 square miles contains 20 species.
(a) Find a formula for S as a function of A.
$S=k^{*} \operatorname{sqrt}(A)$. Since we know that when $A=4$ that $S=20$, we can solve for k. Set up
$20=k * \operatorname{sqrt}(4)$. So $20=2 k, k=10$. So our equation is $S=10 * \operatorname{sqrt}(A)$
(b) If an island is 9 square miles in area, determine the number of species expected on the island.

Compute $S=10 * \operatorname{sqrt}(9)=10 * 3=30$
16. Consider the function given in the table below.

Table 1.10.22

x	1	2	3	4	5	6	7	8	9
$f(x)$	-2	0	-2	-4	-2	0	-2	-4	-2

(a) Explain why the function represented in the following table appears to be periodic.

The numbers in the $f(x)$ column start to repeat.
(b) Approximate the period and the amplitude of the function.
period 4 , amplitude 2
(c) Assuming the function is periodic, estimate $f(10)$ and $f(15)$.

So $f(10)$ would be the same as $f(6)$ and $f(15)$ would be the same as $f(11)$ which is the same as f (7).
17. Find an equation which defines the function shown below. Period 8π and amplitude is 2 . The midline of the function is at $y=2$. The equation would be
$y=2 * \sin [(2 \pi / 8 \pi) x)]+2=2 * \sin \left[(1 / 4)^{*} x\right]+2$

Figure 1.10.31

