1. Suppose a function is given by a table of values as follows:

x	1.1	1.3	1.5	1.7	1.9	2.1
f(x)	12	15	21	23	24	25

- (a) Estimate the instantaneous rate of change of f at x = 1.7.
- (b) Use your answer in (b) to predict a value for f at x = 1.8.
- (c) Is your prediction too large or too small? Explain.
- 2. Let f(T) be the time, in minutes, that it takes for an oven to heat up to temperature $T \circ F$. (a) Give the meaning, in plain English, of f(300) = 10.
 - (b) What are the units of f'(T)?
 - (c) Do you think f'(T) would be positive or negative?
 - (d) Give the meaning, in plain English, of f'(300) = 0.1
- 3. A sports car accelerates from 0 ft/sec to 88 ft/sec in 5 seconds (88 ft/sec = 60 mph) The car's velocity is given in the table below.

t	0	1	2	3	4	5
V(t)	0	30	52	68	80	88

Find upper and lower bounds for the distance the car travels in 5 seconds.

- 4. Let $f(t) = t^3 + t$.
 - (a) What is the total change in f(t) between t = 2 and t = 5?
 - (b) What is the average rate of change in f(t) between t = 2 and t = 5?
- 5. The flow rate of water in a mountain stream due to spring runoff is given in the following table. Give your *best* estimate for the total volume of water from 6:00 pm to midnight.

time (hours since 6:00 pm)	0	1	2	3	4	5	6
flow rate (in cubic meters per hour)		360	410	455	490	520	545

- 6. The graph of h(x) is given to the right.
 - (a) Draw on the graph (label your drawings and use different colors if you can)
 - (i) A line segment whose length equals the change Δh in h(x) between x = 20 and x = 40.
 - (ii) A line segment whose slope equals the average rate of change $\frac{\Delta h}{\Delta x}$ of h(x) between x = 20 and x = 40.
 - (iii)A line whose slope equals the derivative h(10).
 - (iv)A point on the graph where H = 0.
 - (b) Carefully estimate h'(30)
- 7. A car is moving along a straight road from A to B starting from A at time t = 0.

To the right is the velocity (in km/min) plotted against time (in min).

How many kilometers away from A is the car at time

- (b) t = 2
- (c) t = 5
- (d) t = 6
- (e) t = 7

(f) t = 9

- 8. Find the derivatives of the following functions. Do not simplify.
- (a) $f(x) = \sqrt{x}$ (e) $y = \ln(x^3 + 4)$
- (b) $y = r^2 + 7r 17$ (f) $h(z) = z\cos(3z)$
- (c) $h(t) = t^{-} + \sqrt{2} t$

(g) $f(x) = \frac{\ln x + 5}{x^2 + 7}$

(d) $g(x) = 2e^{\pi x}$

9. The temperature, Y, in degrees Fahrenheit of a yam in a hot oven t minutes after it is placed there is given by

$$Y(t) = 350 (1 - 0.7e^{-0.008t})$$

- (b) What was the temperature of the yam when it was placed in the oven?
- (c) If the yam is left on in the oven for a long time, it will eventually reach the temperature of the oven. What is the temperature of the oven?
- (d) When does the yam reach 175 $^{\circ}$ F?
- (e) What is Y(20)? What is Y'(20)? What do these quantities tell us about the temperature of the yam?