1. Suppose a function is given by a table of values as follows:

x	1.1	1.3	1.5	1.7	1.9	2.1
$f(x)$	12	15	21	23	24	25

(a) Estimate the instantaneous rate of change of f at $x=1.7$.
(b) Use your answer in (b) to predict a value for f at $x=1.8$.
(c) Is your prediction too large or too small? Explain.
2. Let $f(T)$ be the time, in minutes, that it takes for an oven to heat up to temperature $T^{\circ} \mathrm{F}$.
(a) Give the meaning, in plain English, of $f(300)=10$.
(b) What are the units of $f^{\prime}(T)$?
(c) Do you think $f^{\prime}(T)$ would be positive or negative?
(d) Give the meaning, in plain English, of $f^{\prime}(300)=0.1$
3. A sports car accelerates from $0 \mathrm{ft} / \mathrm{sec}$ to $88 \mathrm{ft} / \mathrm{sec}$ in 5 seconds ($88 \mathrm{ft} / \mathrm{sec}=60 \mathrm{mph}$) The car's velocity is given in the table below.

t	0	1	2	3	4	5
$V(t)$	0	30	52	68	80	88

Find upper and lower bounds for the distance the car travels in 5 seconds.
4. Let $f(t)=t^{3}+t$.
(a) What is the total change in $f(t)$ between $t=2$ and $t=5$?
(b) What is the average rate of change in $f(t)$ between $t=2$ and $t=5$?
5. The flow rate of water in a mountain stream due to spring runoff is given in the following table. Give your best estimate for the total volume of water from 6:00 pm to midnight.

time (hours since 6:00 pm)	0	1	2	3	4	5	6
flow rate (in cubic meters per hour)	300	360	410	455	490	520	545

6. The graph of $h(x)$ is given to the right.
(a) Draw on the graph (label your drawings and use different colors if you can)
(i) A line segment whose length equals the change Δh in $h(x)$ between $x=20$ and $x=40$.
(ii) A line segment whose slope equals the average rate of change $\frac{\Delta h}{\Delta x}$ of $h(x)$ between $x=20$ and x $=40$.
(iii)A line whose slope equals the derivative $h(10)$.

(iv) A point on the graph where $h^{\prime}=0$.
(b) Carefully estimate $h(30)$
7. A car is moving along a straight road from A to B starting from A at time $t=0$.

To the right is the velocity (in $\mathrm{km} / \mathrm{min}$) plotted against time (in min).

How many kilometers away from A is the car at time
(b) $t=2$
(c) $t=5$
(d) $t=6$
(e) $t=7$
(f) $t=9$
8. Find the derivatives of the following functions. Do not simplify.
(a) $f(x)=\sqrt{x}$
(e) $y=\ln \left(x^{3}+4\right)$
(b) $y=r^{2}+7 r-17$
(f) $h(z)=z \cos (3 z)$
(c) $h(t)=t^{2}+\sqrt{2} t$
(g) $f(x)=\frac{\ln x+5}{x^{2}+7}$
(d) $g(x)=2 e^{\pi x}$
9. The temperature, Y, in degrees Fahrenheit of a yam in a hot oven t minutes after it is placed there is given by

$$
Y(t)=350\left(1-0.7 e^{\text {-anast }}\right)
$$

(b) What was the temperature of the yam when it was placed in the oven?
(c) If the yam is left on in the oven for a long time, it will eventually reach the temperature of the oven. What is the temperature of the oven?
(d) When does the yam reach $175^{\circ} \mathrm{F}$?
(e) What is $Y(20)$? What is $Y^{\prime}(20)$? What do these quantities tell us about the temperature of the yam?

