1. Suppose a function is given by a table of values as follows:

x	1.1	1.3	1.5	1.7	1.9	2.1
$f(x)$	12	15	21	23	24	25

(a) Estimate the instantaneous rate of change of f at $x=1.7$.
(b) Use your answer in (b) to predict a value for f at $x=1.8$.
(c) Is your prediction too large or too small? Explain.
2. Let $f(T)$ be the time, in minutes, that it takes for an oven to heat up to temperature $T^{\circ} \mathrm{F}$.
(a) Give the meaning, in plain English, of $f(300)=10$.

It takes 10 minutes for the oven to heat up to $300^{\circ} \mathrm{F}$.
(b) What are the units of $f^{\prime}(T)$?
f has units of minutes. T is ${ }^{\circ} \mathrm{F}$. So $f^{\prime}=\mathrm{d} f / \mathrm{d} T$ has units of minutes $/{ }^{\circ} \mathrm{F}$.
(c) Do you think $f^{\prime}(T)$ would be positive or negative?

As the oven temperature increases, I think the time it takes (f) the oven to reach that temperature will increase. So I think $f^{\prime}(T)$ is positive.
(d) Give the meaning, in plain English, of $f^{\prime}(300)=0.1$

For every additional degree above $300^{\circ} \mathrm{F}$, the oven will need an additional 0.1 minute.
3. A sports car accelerates from $0 \mathrm{ft} / \mathrm{sec}$ to $88 \mathrm{ft} / \mathrm{sec}$ in 5 seconds $(88 \mathrm{ft} / \mathrm{sec}=60 \mathrm{mph})$ The car's velocity is given in the table below.

t	0	1	2	3	4	5
$V(t)$	0	30	52	68	80	88

Find upper and lower bounds for the distance the car travels in 5 seconds.
A left sum will give an under estimate: $(0+30+52+68+80) * 1=230 \mathrm{ft}$
A right sum will give an over estimate: $(30+52+68+80+88) * 1=318 \mathrm{ft}$
4. Let $f(t)=t^{3}+t$.
(a) What is the total change in $f(t)$ between $t=2$ and $t=5$?

The change in f is $f(5)-f(2)=130-10=120$ (I call this Δf)
(b) What is the average rate of change in $f(t)$ between $t=2$ and $t=5$?

The average rate of change is the total change in the function divided by the total change in x. That is $\Delta f / \Delta x=120 /(5-2)=120 / 3=40$.
5. The flow rate of water in a mountain stream due to spring runoff is given in the following table. Give your best estimate for the total volume of water from 6:00 pm to midnight.

time (hours since 6:00 pm)	0	1	2	3	4	5	6
flow rate (in cubic meters per hour)	300	360	410	455	490	520	545

I'll do a left-sum and a right-sum and average them: left sum=2535; right sum=2780; average $=2657.5$ or about 2658 .
6. The graph of $h(x)$ is given to the right.
(a) Draw on the graph (label your drawings and use different colors if you can)
(i) A line segment whose length equals the change Δh in $h(x)$ between $x=20$ and $x=40$.
(ii) A line segment whose slope equals the average rate of change $\frac{\Delta h}{\Delta x}$ of $h(x)$ between $x=20$ and x $=40$.
(iii) A line whose slope equals the
 derivative $h^{\prime}(10)$.
(iv) point on the graph where $h^{\prime}=0$.
(b) Carefully estimate $h^{\prime}(30)$
7. A car is moving along a straight road from A to B starting from A at time $t=0$.

To the right is the velocity (in $\mathrm{km} / \mathrm{min}$) plotted against time (in min).
How many kilometers away from A is the car at time
(b) $t=2$

Area under $\mathrm{v}(\mathrm{t})$ between 0 and 2 is a triangle of height 2, base 2 . So its area is $4 / 2=\mathbf{2} \mathbf{~ k m}$
(c) $t=5 \quad 2+3 * 2=8 \mathrm{~km}$
(d) $t=62+6+1=9 \mathrm{~km}$
(e) $t=7 v=0$ between 6 and 7 , so no change of distance: 9 km
(f) $t=9 \quad 2+6+1-1=8 \mathbf{k m}$

Find the derivatives of the following functions. Do not simplify.
(a) $f(x)=\sqrt{x}$
a.) $\sqrt{x}=x^{1 / 2}$
$\mathrm{D}[\sqrt{\mathrm{x}}, \mathrm{x}]$
$\frac{1}{2 \sqrt{x}}$
$: D\left[x^{\wedge}(1 / 2), x\right]$
(c) $h(t)=t^{\pi}+\sqrt{2} t$
$\frac{1}{2 \sqrt{x}}$
(d) $g(x)=2 e^{\pi x}$
b.)

$$
\begin{aligned}
& \mathbf{D}\left[r^{\wedge} 2+7 r-17, r\right] \\
& 7+2 r
\end{aligned}
$$

c.)

$$
\begin{aligned}
& =D\left[t^{\wedge} \pi+\sqrt{2} t, t\right] \\
& \sqrt{2}+\pi t^{-1+\pi}
\end{aligned}
$$

d.)
$\mathrm{D}\left[\mathbf{2} \mathbb{e}^{\wedge}(\pi \mathrm{x}), \mathrm{x}\right]$ $2 \mathbb{e}^{\pi \mathrm{x}} \pi$
(e) $y=\ln \left(x^{3}+4\right)$
e)

```
D[LLOg[x^3+4], x]
```

$$
\frac{3 x^{2}}{4+x^{3}}
$$

(f) $h(z)=z \cos (3 z)$

```
f)
D[z Cos[3z], z]
Cos[3z]-3z Sin[3z]
```

(g) $f(x)=\frac{\ln x+5}{x^{2}+7}$
g)

$$
\begin{aligned}
& D\left[(\log [x]+5) /\left(x^{\wedge} 2+7\right), x\right] \\
& \frac{1}{x\left(7+x^{2}\right)}-\frac{2 x(5+\log [x])}{\left(7+x^{2}\right)^{2}}
\end{aligned}
$$

8. The temperature, Y, in degrees Fahrenheit of a yam in a hot oven t minutes after it is placed there is given by

$$
Y(t)=350\left(1-0.7 e^{- \text {onsest }}\right)
$$

(a) What was the temperature of the yam when it was placed in the oven?

$$
\text { At } t=0, Y(0)=350(1-0.7)=350(0.3)=\mathbf{1 0 5} \text { degrees } \mathbf{F} \text {. }
$$

(b) If the yam is left on in the oven for a long time, it will eventually reach the temperature of the oven. What is the temperature of the oven?
$e^{\text {vimamen }}=0$. So $Y($ big number $)=350(1-0)=\mathbf{3 5 0}$ Degrees \mathbf{F} is the temperature of the oven.
When does the yam reach $175^{\circ} \mathrm{F}$?

$$
\begin{aligned}
\text { Solve } 175= & 350\left(1-0.7 e^{- \text {-osese }}\right) \text { for } t . \text { I get... } \\
& \text { at } \mathbf{4 2 . 0 6} \text { minutes. }
\end{aligned}
$$

(c) What is $Y(20)$? What is $Y^{\prime}(20)$? What do these quantities tell us about the temperature of the yam?
$Y(20)=141.2 ; Y^{\prime}(t)=0.8 e^{-\operatorname{coses}} ; Y^{\prime}(20)=1.67$.
This means that at 20 minutes the yam's temperature is 141 degrees F , and the rate of change of its temperature is 1.67 degrees F per minute.

Let's say that the temperature of the yam is $Y(t)=350\left(1-0.7 e^{-0.008 t}\right)$ where the temperature is in degrees $\lfloor 2$ fahrenheit (F) and time is in minutes.

The derivative, $Y^{\prime}(t)$ is the rate of change of temperature with respect to time, so it has units of degrees F / minute.
To calculate the derivative:

$$
\begin{aligned}
Y^{\prime}(t) & =\left[350\left(1-0.7 e^{-0.008 t}\right)\right]^{\prime} \\
& =350\left[\left(1-0.7 e^{-0.008 t}\right)\right]^{\prime} \\
& =350[1]^{\prime}-350\left[0.7 e^{-0.008 t}\right]^{\prime} \\
& \left.=350 \cdot 0-350 \cdot 0.7\left[e^{-0.008 t}\right)\right]^{\prime} \\
& =0-350 \cdot 0.7 \cdot(-0.008) \cdot e^{-0.008 t} \\
& =+350 \cdot 0.7 \cdot(0.008) e^{-0.008 t}
\end{aligned}
$$

Evaluating $Y^{\prime}(20)=350 \cdot 0.7 \cdot 0.008 e^{-0.008 \cdot 20}$:

In [1]: $350 * 0.7 * 0.008 * e^{\wedge}(-0.008 * 20)$
Out [1]: 1.67020182637377
That's 1.67 degrees F/ minute.

