1. The graph of $f(x)$ is given in the figure to the right.
(a) For which values of x is f increasing?
(b) For which values of x is f decreasing?
(c) For which values of x is f concave up?

(d) For which values of x is f concave down?
(e) Where does $f^{\prime}(x)$ change its sign?
(f) Where does $f^{\prime}(x)$ have a local maximum or minimum?
(g) Sketch the graph of $f^{\prime}(x)$ on the same axes.
(h) Sketch the graph of $f^{\prime \prime}(x)$ on the same axes
2. Find constants a and b in the function $f(x)=a x e^{b x}$ such that $f(1 / 3)=1$ is a local maximum.
3. The number of plants in a terrarium is given by the function $P(c)=-1.2 c^{2}+4 c+10$ where c is the number of mg of plant food added to the terrarium. Find the amount of plant food that produces the highest number of plants.
4. The graph of f is shown below. If $F^{\prime}=f$ and $F(0)=3$, then what is $F(3)$?

5. Be able to find antiderivatives such as those given in the chapter 6 review exercises.
6. The graph of f is shown to the right.

Estimate
$\int_{a}^{b} f(x) d x$
$\int_{a}^{c} f(x) d x$
$\int_{a}^{d} f(x) d x$
$\int_{a}^{d}|f(x)| d x$
7. Use the fundamental theorem of calculus to
 determine the value of b if the area under the graph of $f(x)=3 x^{2}+1$ between $x=0$ and $x=b$ is 30 . Assume $b>0$.
8. The graph of $g^{\prime}(x)$ is shown. Sketch the graph of $g(x)$ assuming $g(0)=2000$.

Then fill in the table below.

x	0	100	200	300	400
$g(x)$	2000				

x	100	200	300	400
$g^{\prime}(x)$				

Determine if the following are positive or negative.
(i) $g(50)$
(ii) $g(150)$
(iii) $g(350)$
(iv) $g^{\prime}(50)$
(v) $g^{\prime}(150)$
(vi) $g^{\prime}(350)$
(vii) $g^{\prime \prime}(50)$
(viii) $g^{\prime \prime}(150)$
(ix) $g^{\prime \prime}(350)$

