13 Limits, Continuity, and the Definition of Derivative

Chapter 2 Focus on Theory

An Example

Suppose the distance (in light-years) of the Starship Enterprise from the Earth at *t* years after its mission started is given by $f(t) = 8 \sin(\frac{\pi}{5}t) + \sin(7\pi t)$.

1. How far from the Earth is the Starship Enterprise 2.1 years after its mission started?

$$f[t_{1}] := 8 \operatorname{Sin}\left[\frac{\pi}{5}t\right] + \operatorname{Sin}[7 \pi t]$$

 $f[2.1]$

8.55768

About 8.56 light-years.

2. What was the average velocity (with respect to the Earth) of the Starship Enterprise during the first 2.1 years of its mission?

About 4.08 light-years per year (warp 4).

3. What was the instantaneous velocity (with respect to the Earth) of the Starship Enterprise 2.1 years after its mission started?

Limits

Definition. If the values of g(x) get closer and closer to a finite number as x gets closer and closer to a, we call that finite number the *limit* of g(x) as x approaches a, and denote it by $\lim_{x\to a} g(x)$.

1. What is the limit of $g(x) = e^{-\tan(\pi x)}$ as x approaches 0.3?

```
g[x_{-}] := e^{-Tan[\pi x]}
Table[g[x], {x, {0.301, 0.3001, 0.30001}}]

{0.250195, 0.252261, 0.252467}

About 0.253.

2. What is the limit of g(x) = e^{-tan(\pi x)} as x approaches 0.5?

g[x_{-}] := e^{-Tan[\pi x]}

Table[g[x], {x, {0.501, 0.5001, 0.50001}}]

{1.73689 × 10<sup>138</sup>, 2.524791790952 × 10<sup>1382</sup>, 1.05367341316 × 10<sup>13824</sup>}

Does not exist.

3. What is the limit of h(x) = cos(\frac{\pi}{x}) as x approaches 0?

h[x_{-}] := cos[\pi / x]

Table[h[x], {x, {0.001, 0.0001, 0.00001, 0.0000010133}}]
```

```
Out[12]= {1., 1., 1., -0.212751}
```


- **4.** What is the limit of $\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t}$ as Δt approaches 0? About -11.676.
- f[2, 1 + A + 1] =

 $\operatorname{Limit}\left[\frac{f[2.1+\Delta t] - f[2.1]}{\Delta t}, \Delta t \to 0\right]$ -11.676

5. What is the limit of the ceiling function as x approaches 2?

Continuity

Definition. A function g(x) is *continuous* at x = a if $\lim_{x\to a} g(x) = g(a)$.

Remark. Implicit in this statement are three criteria: (1) the function g(x) must be defined at a, (2) the limit of f(x) as x approaches a must exist, and (3) the two must be equal.

1. Is $g(x) = e^{-\tan(\pi x)}$ continuous at x = 0.3?

Limit[g[x], $x \to 0.3$] g[0.3] 0.25249 0.25249 2. Is $g(x) = e^{-\tan(\pi x)}$ continuous at x = 0.5? Limit[g[x], $x \to 0.5$] g[0.5]

ω

General::unfl : Underflow occurred in computation. >>

Underflow[]

3. Is $h(\Delta t) = \frac{f(2.1 + \Delta t) - f(2.1)}{\Delta t}$ continuous at $\Delta t = 0$? Limit $\left[\frac{f[2.1 + \Delta t] - f[2.1]}{\Delta t}, \Delta t \rightarrow 0\right]$ $\frac{f[2.1 + \Delta t] - f[2.1]}{\Delta t} / . \Delta t \rightarrow 0$ -11.676

Power::infy : Infinite expression $\frac{1}{0}$ encountered. \gg

ComplexInfinity

We can define a continuous extension of $h(\Delta t) = \frac{f(2.1+\Delta t)-f(2.1)}{\Delta t}$:

4. Is the ceiling function continuous at x = 3? No, since the limit does not exist.

Derivatives Analytically

- **1.** If $f(x) = x^2 4x + 7$, find f'(3).
- **2.** If $f(x) = x^2 4x + 7$, find f'(x).

Sandbox

General::unfl : Underflow occurred in computation. \gg General::unfl : Underflow occurred in computation. \gg 1

