I3 Limits, Continuity, and the Definition of Derivative

Chapter 2 Focus on Theory

An Example

Suppose the distance (in light-years) of the Starship Enterprise from the Earth at t years after its mission started is given by $f(t)=8 \sin \left(\frac{\pi}{5} t\right)+\sin (7 \pi t)$.

1. How far from the Earth is the Starship Enterprise 2.1 years after its mission started?
$f\left[t_{-}\right]:=8 \operatorname{Sin}\left[\frac{\pi}{5} t\right]+\operatorname{Sin}[7 \pi t]$
f[2.1]
8.55768

About 8.56 light-years.
2. What was the average velocity (with respect to the Earth) of the Starship Enterprise during the first 2.1 years of its mission?
$\frac{f[2.1]-f[0]}{2.1-0}$
4.07509

About 4.08 light-years per year (warp 4).
3. What was the instantaneous velocity (with respect to the Earth) of the Starship Enterprise 2.1 years after its mission started?
$\frac{f[2.10001]-f[2.1]}{2.10001-2.1}$

- 11.678

About warp 11.68.
Table $\left[\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t},\{\Delta t,\{.0001, .00001, .000001\}\}\right]$
$\{-11.6957,-11.678,-11.6762\}$
$P \operatorname{lot}\left[\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t},\{\Delta t,-.0001, .0001\}\right]$

Limits

Definition. If the values of $g(x)$ get closer and closer to a finite number as x gets closer and closer to a, we call that finite number the limit of $g(x)$ as x approaches a, and denote it by $\lim _{x \rightarrow a} g(x)$.

1. What is the limit of $g(x)=e^{-\tan (\pi x)}$ as x approaches 0.3 ?
$\mathrm{g}\left[\mathrm{x}_{-}\right]:=\mathrm{e}^{-\operatorname{Tan}[\pi x]}$
Table[g[x], \{x, \{0.301, 0.3001, 0.30001\}\}]
\{0.250195, 0.252261, 0.252467\}
About 0.253.
2. What is the limit of $g(x)=e^{-\tan (\pi x)}$ as x approaches 0.5 ?
$\mathrm{g}\left[\mathrm{x}_{-}\right]:=\mathrm{e}^{-\operatorname{Tan}[\pi x]}$
Table[g[x], \{x, \{0.501, 0.5001, 0.50001\}\}]
$\left\{1.73689 \times 10^{138}, 2.524791790952 \times 10^{1382}, 1.05367341316 \times 10^{13824}\right\}$
Does not exist.
3. What is the limit of $h(x)=\cos \left(\frac{\pi}{x}\right)$ as x approaches 0 ?
$\ln [11]:=h\left[x_{-}\right]:=\operatorname{Cos}[\pi / x]$
Table[h[x], \{x, \{0.001, 0.0001, 0.00001, 0.0000010133\}\}]
Out[12]= \{1., 1., 1., -0.212751\}

4. What is the limit of $\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t}$ as Δt approaches 0 ?

About -11.676.
$\operatorname{Limit}\left[\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t}, \Delta t \rightarrow 0\right]$
-11.676
5. What is the limit of the ceiling function as x approaches 2 ?

3
2
3

Continuity

Definition. A function $g(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} g(x)=g(a)$.
Remark. Implicit in this statement are three criteria: (1) the function $g(x)$ must be defined at a, (2) the limit of $f(x)$ as x approaches a must exist, and (3) the two must be equal.

1. Is $g(x)=e^{-\tan (\pi x)}$ continuous at $x=0.3$?

4

Limit[g[x], $x \rightarrow 0.3]$
g[0.3]
0.25249
0.25249
2. Is $g(x)=e^{-\tan (\pi x)}$ continuous at $x=0.5$?

Limit $[\mathrm{g}[\mathrm{x}], \mathrm{x} \rightarrow 0.5]$
g[0.5]
∞

General::unfl : Underflow occurred in computation. >>
Underflow []
3. Is $h(\Delta t)=\frac{f(2.1+\Delta t)-f(2.1)}{\Delta t}$ continuous at $\Delta t=0$?
$\operatorname{Limit}\left[\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t}, \Delta t \rightarrow 0\right]$
$\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t} / . \Delta t \rightarrow 0$
-11.676
Power::infy: Infinite expression $\frac{1}{0}$ encountered. >>
ComplexInfinity
$P \operatorname{lot}\left[\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t},\{\Delta t,-.1, .1\}\right.$, Exclusions $\left.\rightarrow\{\Delta t=0\}\right]$

We can define a continuous extension of $h(\Delta t)=\frac{f(2.1+\Delta t)-f(2.1)}{\Delta t}$:
$h\left[\Delta t_{-}\right]:=$Piecewise $\left[\left\{\left\{\frac{f[2.1+\Delta t]-f[2.1]}{\Delta t}, \Delta t \neq 0\right\},\{-11.67602109737054, \Delta t=0\}\right\}\right]$
Plot[h[x], \{x, -.1, .1\}, PlotPoints \rightarrow 200]

4. Is the ceiling function continuous at $x=3$?

No, since the limit does not exist.

Derivatives Analytically

1. If $f(x)=x^{2}-4 x+7$, find $f^{\prime}(3)$.
2. If $f(x)=x^{2}-4 x+7$, find $f^{\prime}(x)$.

Sandbox


```
\(f\left[x_{-}\right]:=e^{-\operatorname{Tan}[\pi x]^{2}}\)
Plot[f[x] +.1, \{x, 0, 1\}, Exclusions \(\rightarrow 1 / 2\), ExclusionsStyle \(\rightarrow\) None]
```


$f\left[x_{-}\right]:=\frac{1-e^{-\operatorname{Tan}[\pi x]}}{1+e^{-\operatorname{Tan}[\pi x]}}$
Plot[f[x], \{x, -1, 1\}]

f[.5]

General::unfl : Underflow occurred in computation. >>
General::unfl : Underflow occurred in computation. >>
1
$P \operatorname{lot}\left[\frac{1-e^{-x}}{1+e^{-x}},\{x,-10,10\}\right]$

