[6.2] - Scalar Line Integrals
- Let $f(x,y,z)=x-3y^2+z$.
Integrate $f$ over the line segment $C$ joining the origin $(0,0,0)$ and the point $(1,1,1)$.
- Let $f(x,y,z)=x-3y^2+z$.
Integrate $f$ over the 2-segment path shown joining the origin $(0,0,0)$ and the point $(1,1,1)$.
Answers
1.) 0; 2.) $\frac{-3-\sqrt 2}2$
show / hide the details...
- The line segment $C$ can be specified by $\myv r(t)=t\uv i+t\uv j+t\uv k$.
$\myv r'(t)=\langle 1,1,1\rangle \Rightarrow |\myv r'(t)|=\sqrt 3$. And so, $$\begineq \int_C f(x,y,z)\,dx&=& \int_0^1 (t-3t^2+t)\,\sqrt 3\,dt\\ &=&\sqrt 3\int_0^1(2t-3t^2)=\sqrt 3(1^2-1^3)=0\endeq$$ The answer is 0.
- The path consists of 2 segment, I'll call these $C_1: \ (0,0,0)\to(1,1,0)$
and $C_2:\ (1,1,0)\to(1,1,1)$.
Then $$\int_C f\,ds=\int_{C_1}f\,ds+\int_{C_2}f\,ds.$$
$C_1$:
$\myv r(t)=\langle t,t,0 \rangle$ with $0\leq t\leq 1$
$\myv r'(t)=\langle 1,1,0\rangle$ and $|\myv r'(t)|=\sqrt 2$.
$f(x(t),y(t),z(t))= t-3t^2$
$$\int_{C_1}f\,ds=\int_0^1 (t-3t^2)\,\sqrt 2\,dt=\left(\frac{1^2}2-(1)^3\right)\sqrt 2=-\frac{\sqrt2}2.$$$C_2$:
$\myv r(t)=\langle 1,1,z \rangle$ with $0\leq z\leq 1$
$\myv r'(t)=\langle 0,0,1\rangle$ and $|\myv r'(t)|=1$.
$f(x(t),y(t),z(t))= 1-3(1)^2+t=t-2$
$$\int_{C_2}f\,ds=\int_0^1 (-2+z)\,dz=\left(-2*(1)+\frac12(1)\right)=-\frac32.$$
$C=C_1+C_2$:
$$\int_C f\,dS=\frac{-\sqrt 2}{2}-\frac32=\frac{-3-\sqrt 2}2.$$ The answer is $\frac{-3-\sqrt 2}2$.