9.5 - Lines in the Plane
Let $t$ be a scalar.
The vector $\myv r(t)=\myc{4,3}+t\myc{2,-1}$ is a function of $t$. Let $\myv r(t)$ be a position vector with its tail always at the origin.
Compute (and write down) the vectors $\myv r(t)$ for $t=$-1.5, -1, 0,
1, 2, and 3.
$\myv r(-1.5)=\langle 4,3\rangle -1.5\langle 2,-1\rangle=
\langle 4,3\rangle +\langle -3,+1.5\rangle=
$$\langle 1, 4.5\rangle$
$\myv r(-1)=\langle 2,4 \rangle$
$\myv r(0)=\langle 4,3 \rangle$
$\myv r(1)=\langle 6,2 \rangle$
$\myv r(2)=\langle 8,1 \rangle$
$\myv r(2)=\langle 10,0 \rangle$
Into the coordinate system below, draw the vectors $\myv r(t)$ for
the values of $t$ you calculated above.
After plotting the position vectors, it looks like their tips all lie along a common line:
if (! $homepage){
$stylesheet="/~paulmr/class/comments.css";
if (file_exists("/home/httpd/html/cment/comments.h")){
include "/home/httpd/html/cment/comments.h";
}
}
?>