Math 213-11.3-4-Tabular Data

Wave Heights on the Open Sea

The wave heights h in the open sea depend on the speed v of the wind (knots) and the length of time t that the wind has been blowing at that speed (hours). Values for the function $h=f(v, t)$

Questions:

1. What is the value of $f(40,15)$? What is its meaning? If a $40-\mathrm{knot}$ wind has been blowing for 15 hours, the $h(40,15)=25$ (feet?)
2. What is the meanings of the function $h=f(30, t) ? h=f(v, 30)$?
$f(30, t)$ is the height of waves as a function of t (how long the wind has been blowing at 30 knots).
3. Estimate the values of $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings. When the wind is blowing at
4. Find a linear approximation to the wave height function when v is near 40 knots and t is near 20 hours. (Round the numerical coefficients to two decimal places).

5. Using the linear approximation, estimate the wave heights when the wind has been blowing for 24 hours at 43 knots. (Round the answer to two decimal places).

$$
h(43,24)=28+1.15(3)+0.4(4)=33.05(f \text { feet }) \quad h
$$

6. What do you think is the $\lim _{t \rightarrow \infty} \frac{\partial f}{\partial t}$?
It seems as if each of the rows is "saturating", eventually, at large t values, reaching a constant height. That is

Partial Derivatives and Data

The function $f(x, y)$ is given by the following data.

	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1 0}$	$\mathbf{x}=\mathbf{2 0}$	$\mathbf{x}=\mathbf{3 0}$
$\mathbf{y}=\mathbf{0}$	89	80	74	71
$\mathbf{y}=\mathbf{2}$	93	85	80	76
$\mathbf{y}=\mathbf{4}$	98	91	85	81
$\mathbf{y}=\mathbf{6}$	104	98	92	88
$\mathbf{y}=\mathbf{8}$	112	105	99	94

What is $f(10,6)$?

If $f(x, y)=98$ and $y=4$ then what is x ?
Estimate $\frac{\partial f}{\partial x}$ at $(20,4)$.

Estimate $\frac{\partial f}{\partial y}$ at $(20,4)$.

Use these partial derivatives to estimate $f(22,4)$.

Use these partial derivatives to estimate $f(20,5)$.

Estimate $f(22,5)$.

Math 213-11.3-4-Graphical Data

The following is a map with curves of the same elevation of a region in Orangerock National Park.

We define the altitude function $A(x, y)$ as the altitude at a point x meters east and y meters north of the origin ("Start").

1. Estimate $A(300,300)$ and $A(500,500)$.
at $(x, y)=(300,300)$

2. Estimate $A_{x}(300,300)$ and $A_{y}(300,300)$.

$$
A_{x} \simeq \frac{\Delta A}{\Delta x}=\frac{80-60}{400-150}=\frac{20}{250} \simeq 0.08
$$

3. What do A_{x} and A_{y} represent in physical terms?

$$
\begin{aligned}
& \text { slope of apith as slope of ap adj as } \\
& \text { more East } \\
& \text { we move North }
\end{aligned}
$$

Math 213-11.3-4-Graphical Data

4. In which direction does the altitude increase most rapidly at the point $(300,300)$?
5. Use your estimates of $A_{x}(300,300)$ and $A_{y}(300,300)$ to approximate the altitude at $(320$, 310).

Math 213-11.3-4 - More Graphical Data

1. Refer to the following contour graph.

FIGURE 8 Contour map of $f(x, y)$.

a) Estimate f_{x} and f_{y} at the point A.
b) Starting at point B, in which direction does f increase most rapidly?
c) At which of A, B, or C is f_{y} smallest?
2. Refer to the following contour graph of $f(x, y)$.

FIGURE 9 Contour interval 2.
a) Explain why f_{x} and f_{y} are both larger at P than at Q.
b) Explain why $f_{x}(x, y)$ is an increasing function of y. That is, for any x, $f_{x}\left(x, b_{1}\right)>f_{x}\left(x, b_{2}\right)$ whenever $b_{1}>b_{2}$.

The level curves of a function $z=f(x, y)$ are given below.

Use the level curves of the function to decide the signs (positive, negative, or zero) of the $f\left(x, \frac{1}{2}\right)$ derivatives $f_{x x}, f_{y y}, f_{x y}, f_{y x}$, of the function at the point $\left(\frac{3}{2}, \frac{1}{2}\right)$

$f\left(\frac{3}{2}, y\right)$

