1. Sketch the region in the wy plane that is the base of the volume integral, and evaluate the integral:

$$
\int_{0}^{1} \int_{y=0}^{1+x}(3 x+2 y) d y d x
$$

$$
\begin{gathered}
\int_{y=0}^{1+x}(3 x+2 y) d y=4 x^{2}+5 x+1 \\
\int=\frac{29}{6}
\end{gathered}
$$

2. Integrate $\iint_{R} x y d A$ where R is the region bounded by the graphs of $y=\sqrt{x}, \quad y=\frac{1}{2} x, \quad x=2, \quad x=4$ as seen below.

Int xy dy $=-\frac{1}{8}\left(x^{2}-4 x\right) x$
Int _ $\mathrm{dx}=-\frac{1}{32} x^{4}+\frac{1}{6} x^{3}$
Int_2 ${ }^{\wedge} 4$ _ $\mathrm{dx}=\frac{11}{6}$
3. Evaluate $\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(\pi x^{3}\right) d x d y$ by reversing the order of integration.
$\int_{0}^{1} \int_{0}^{x^{2}} \cdots d y d x$
Int $\sin \left(\right.$ pi $\left.x^{\wedge} 3\right) d y=x^{2} \sin \left(\pi x^{3}\right)$

Int _ $\mathrm{dx}=\frac{2}{3 \pi}$
4. Set up an integral for both orders of integration. Do not evaluate.

$$
\iint_{R} \frac{y}{x^{2}+y^{2}} d A
$$

where R is the triangle bounded by $y=x$,
a. \quad Sketch the region R.

b. Set up the integral for the order: $d y d x$.

$$
\int_{x=0}^{2} \int_{y=x}^{2 x} \frac{y}{x^{2}+y^{2}} d y d x
$$

c. Set up the integral for the order: $d x d y$.

$$
\int_{y=0}^{2} \int_{x=y / 2}^{y} \frac{y}{x^{2}+y^{2}} d x d y+\int_{y=2}^{4} \int_{x=\frac{y}{2}}^{2} \frac{y}{x^{2}+y^{2}} d x d y
$$

